Tìm nghiệm nguyên của phương trình: \(yx^2+y=x^3-x^2+2x+7\)
Tìm nghiệm nguyên của phương trình sau
x^2y+x^2=x^3-y+2x+7
Ta có phương trình :
\(x^2y+x^2=x^3-y+2x+7\)
\(\Leftrightarrow x^2y+y=x^3-x^2+2x+7\)
\(\Leftrightarrow y.\left(x^2+1\right)=x^3-x^2+2x+7\)
\(\Leftrightarrow y=\frac{x^3-x^2+2x+7}{x^2+1}\)
Do \(y\inℤ\rightarrow\frac{x^3-x^2+2x+7}{x^2+1}\inℤ\). Lại có \(x\inℤ\Rightarrow\hept{\begin{cases}x^3-x^2+2x+7\inℤ\\x^2+1\inℤ\end{cases}}\)
\(\Rightarrow x^3-x^2+2x+7⋮x^2+1\)
\(\Leftrightarrow x.\left(x^2+1\right)-\left(x^2+1\right)+x+8⋮x^2+1\)
\(\Leftrightarrow x+8⋮x^2+1\)
\(\Rightarrow\left(x+8\right)\left(x-8\right)⋮x^2+1\)
\(\Leftrightarrow x^2+1-65⋮x^2+1\)
\(\Leftrightarrow65⋮x^2+1\)\(\Leftrightarrow x^2+1\inƯ\left(65\right)\). Mà : \(x^2+1\ge1\forall x\)
\(\Rightarrow x^2+1\in\left\{1,5,13,65\right\}\)
\(\Leftrightarrow x^2\in\left\{0,4,12,64\right\}\). \(x^2\) là số chính phương với \(x\inℤ\)
\(\Rightarrow x^2\in\left\{0,4,64\right\}\Rightarrow x\in\left\{0,2,-2,8,-8\right\}\)
+) Với \(x=0\) thì \(y=7\) ( Thỏa mãn )
+) Với \(x=2\) thì \(y=3\) ( Thỏa mãn )
+) Với \(x=-2\) thì \(y=-\frac{9}{5}\) ( Loại )
+) Với \(x=8\) thì \(y=\frac{471}{65}\) ( Loại )
+) Với \(x=-8\) thì \(y=-9\) ( Thỏa mãn )
Vậy phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(-8,-9\right);\left(0,7\right);\left(2,3\right)\right\}\)
tìm nghiệm nguyên của phương trình x^2 + 2x = y^2 + 2y + 7
\(x^2+2x=y^2+2y+7\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=7\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+2\right)=7\)
Đến đây bạn lập bảng ước của 7 rồi tự làm nha
x^2-y^2-2x+2y
=(x^2-y^2)-(2X-2Y)
=(x+y)(x-y)-2(x-y)
=(x-y)(x+y-2)
ban kia lam dung roi do
k tui nha
thanks
tìm các cặp (x;y) nguyên dương thoả mãn phương trình yx^3+17(2x-y)^2
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
tìm nghiệm nguyên của phương trình 2x^3 -x^2y + 3x^2 +2x -y=2
2x3-x2y+3x2+2x-y=2
(2x3+2x)-(x2y+y)+(3x2+3)=5
2x(x2+1)-y(x2+1)+3(x2+1)=5
(x2+1)(2x-y+3)=5
Mà x2>=0 => x2+1>0
=> (x2+1)(2x-y+3)=5=1.5=5.1
•x2+1=1 và 2x-y+3=5 => x=0; y=-2
•x2+1=5 và 2x-y+3=1=> x=2;y=6 hoặc x=-2; y=-2
Vậy (x;y) là (0;-2);(2;6);(-2;-2)
Tìm nghiệm nguyên của phương trình : x^6 - x^4 + 2x^3 + 2x^2 = y^2
x6 - x4 + 2x3 + 2x2 = x2(x + 1)2(x2 - 2x + 2) = y2.
do đó x2 - 2x + 2 = t2 hay (x - 1)2 + 1 = t2 hay (x - 1 - t)(x - 1 + t) = 1.
đến đấy bạn tự giải nhé.
a) Tìm tất cả nghiệm nguyên dương của bất phương trình : \(11x-7< 8x+7\)
b) Tìm tất cả nghiệm nguyên âm của bất phương trình \(\frac{x^2+2x+8}{2}-\frac{x^2-x+1}{6}>\frac{x^2-x+1}{3}-\frac{x+1}{4}\)
c)Tìm nghiệm nguyên nhỏ nhất của bất phương trình : \(2\left(3-x\right)-1,5\left(x-4\right)< 3-x\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
c)2(3-x)-1,5(x-4)<3-x
<--->6-2x-1,5x+6<3-x
<--->6+6-3<2x+1,5x-x
<--->9<2,5x
<--->3,6<x mà x la so nguyen nhỏ nhất
--->x=4
\(2x-y+3^2=3\left(x-3y-y^2+2\right)\)
Tìm nghiệm nguyên dương (x;y) của phương trình \(x^6-2x^3y-x^4+y^2+7=0\)
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc