Bài 1 :
Với \(a>0;b>0;c>0.\) Hãy CM các BĐT sau :
a) \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Bài 1: Cho A= x(x-4). Với giá trị nào của x thì: A=0; A<0; A>0
Bài 2: Cho B= (x-3) : x (x khác 0). Với giá trị nào của x thì: B=0 ; B<0; B>0
Bài 1: Chứng minh
a. A = 2x ^ 2 + 2x + 1 > 0 với mọi x
b. B = 4 + x ^ 2 + x > 0 với mọi x
Bài 2: Chứng minh
a. A = - x ^ 2 + 3x - 1 < 0 với mọi x
b. B = - 2x ^ 2 - 3x - 3 < 0 với mọi x
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
Bài 1:
\(B=4+x^2+x=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\\ Vậy:B>0\forall x\in R\)
Bài : Rút gọn biểu thức sau
a) (1-\(\sqrt{x}\) ) (1+\(\sqrt{x}\) +x) - \(\sqrt{x^3}\) với x ≥ 0
b. ( \(\dfrac{1-\sqrt{a}}{1-a}\))2 . (\(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\)+ \(\sqrt{a}\) với a ≥ 0 , a≠0
Bài 1
a) 0,(3) + 0,(67)
b) 0,(15) . 11
c) 4/9 +1,2 (31)-0,(13)
d) 2 1/2 - 3,4 (12)-4/3 +1/3(1/2+0,5- 3 1/2)
Bài 2
a) 0,(37).x=1
b) 0,(26).x=1,2(31)
Mấy ah chị giúp em mấy câu này với ạ . Em cần gấp ạ
bai tap nay lop may day
Bài 1: Đưa thừa số ra ngoài dấu căn a. √48a⁴b² ( với b < 0 ) b. √-25x³ ( với x < 0 )
a: \(\sqrt{48a^4b^2}=\sqrt{16a^4b^2\cdot3}=4\sqrt{3}\cdot a^2\cdot\left|b\right|\)
\(=-4\sqrt{3}\cdot a^2b\)
b: \(\sqrt{-25x^3}=\sqrt{-25x^2\cdot x}=\left|25x^2\right|\cdot\sqrt{-x}\)
\(=-5x\sqrt{-x}\)
Bai 1:
Chứng minh
a)A=4x-x^2+3<0 với mọi x
b)B=x-x^2<0 với mọi x
c)C=2x-2x^2-5<0 với mọi x
Bài 2Tim giá trị lớn nhất của các biểu thức A,B,C ở bài 1
Đang cần gấp mọi người giúp với
bài 1.CMR:x8-x5+x2-x+1>0 với mọi x \(\in\)R
bài 2.CMR:5x2+5y2+5z2+6xy-8xz-8zy>0
bài 3.CMR với mọi số nguyên n >1 ta đều có\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}<\frac{2n^2+n+1}{4}\)
bài 4.CMR:nếu 3 số a,b,c tm các điều kiện a+b+c>0;ab+bc+ca>0;abc>0 thì a>0;b>0;c>0
1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0
*nếu x<1. ta có: A=x8 +x2 (1-x3)+ (1-x)>0 (từng số hạng >o)
ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !
1. x^8-x^5+x^2-x+1>0
<=>x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^7-x^6-x^5-x^5-x^4-x^3+x^2+x+1>0
<=>x^6(x^2+x+1)+x^3(x^2+x+1)+(x^2+x+1)-x^5(x^2+x+1)-x^3(x^2+x+1)+(x^2+x+1)>0
<=>(x^2+x+1)(x^6-x^5+2)>0
<=>(x+1)^2x(x+2)>0 => BĐT đúng
Vậy x^8-x^5+x^2-x+1>0 với mọi x thuộc R
Bài 1 : Tìm x
a, (7x-3)^2 - 5x (9x+2) - 4x^2 = 18
b, (x-7)^2 -9 (x+4)^2 = 0
c,(2x+1)^2+(4x-1) (x+5) =36
Bài 2: Chứng minh rằng:
a, x^2 -12x +39> 0 với Mọi x
b,17- 8x+x^2>0 với mọi x
c, -x^2 +6x -11<0 với mọi x
d,-x^2 +18x -83<0 với mọi x
Bài 1.
a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18
<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18
<=> -52x + 9 = 18
<=> -52x = 9
<=> x = -9/52
b) ( x - 7 )2 - 9( x + 4 )2 = 0
<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0
<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0
<=> -8x2 - 86x - 95 = 0
<=> -8x2 - 10x - 76x - 95 = 0
<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0
<=> ( x + 5/4 )( -8x - 76 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)
c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36
<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36
<=> 8x2 + 23x - 4 - 36 = 0
<=> 8x2 + 23x - 40 = 0
=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))
Bài 2.
a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
Bài: C/m đẳng thức
\(\dfrac{1}{\sqrt{4}-\sqrt{5}}\) : \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\) = \(\dfrac{1}{a-b}\) với a,b>0 , a,b≠0
bài 1 CMR
a, x2 -5x +12 >0 với mọi x
b, (x-3)(x-5)+20 >0 với mọi x
bài 2 Tìm x
a, 3x+5 > hoặc = 2+2x
giải theo bài 1 : liên hệ giữa thứ tự và phép cộng
Bài 1:
a) Xét 4(x^2-5x+12)=4x^2-20x+48=[(2x)^2-2.2x.5+5^2] +23=(2x-5)^2+23 >= 0+23 > 0 với mọi x
=>x^2-5x+12>0 Với mọi x
b) ta có (x-3)(x-5) +20= x^2-8x+15 +20=x^2-8x+35=[x^2-2.4.2x+4^2]+19=(x-4)^2 +19 >= 0+19 >0
Bài 2:
Ta có : 3x+5 >= 2+2x
=>3x-2x>=2-5
=>x >= -3
Vậy x >= -3