Chứng minh hàm số y=(m^2-3m+5)x+m-1 luôn là hàm số bậc nhất với mọi giá trị của m
Chứng minh hàm số y=(m^2-3m+5)x+m-1 luôn là hàm số bậc nhất vs mọi giá trị của m
Điều đó là đương nhiên cần gì phải c/m?
Đây là dạng y=ax+b với
a=m2-3m+5 và b=m-1
cho hàm số \(y=\left(-3m^2-6+7m\right)x+m\) chứng minh với mọi giá trị của m hàm số đã cho là hàm bậc nhất và nghịch biến
-3m^2+7m-6
=-3(m^2-7/3m+2)
=-3(m^2-2*m*7/6+49/36+23/36)
=-3(m-7/6)^2-23/12<=-23/12<0 với mọi m
=>y=(-3m^2+7m-6)x+m luôn là hàm số bậc nhất và luôn nghịch biến trên R
1) cho hàm số bậc nhất y=\(\sqrt{m-1}\) -6x+5 tìm m để hàm số đã cho là hàm số bậc nhất và nghịch biến
2) cho hàm số bậc nhất y=\(\left(m^2-m+1\right)x+m\) chứng minh với mọi giá trị của m,hàm số đã cho là hàm số bậc nhất và đồng biến
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
Cho hàm số y=\(\frac{m-1}{m^2-3m+2}\).X+m .Chứng minh với mọi giá trị của m hàm số đã cho là hàm bậc nhất và nghịch biến
Cho hàm số bậc nhất y=(2m - 1)x - 3m + 5 có đồ thị la đường thẳng d chứng minh đường tẳng d luôn đi qua 1 điểm cố định với mọi giá trị của m
gọi A{x0,y0 } là điểm cố định
thay A vào d ta có:
y0=(2m-1)x0-3m+5\(\Rightarrow\)y0-(2m-1)x0+3m+5=0\(\Leftrightarrow\)y0-2mx0+x0+3m+5=0
\(\Leftrightarrow\)m(3-2x0)+(y0+x0+5)=0\(\Leftrightarrow\left\{{}\begin{matrix}3-2x_0=0\\y_0+x_0+5=0\end{matrix}\right.\)(đồng nhất thức)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x_0=\dfrac{3}{2}\\y_0=-\dfrac{13}{2}\end{matrix}\right.\)
cho hàm số bậc nhất y=(2m-1)x-3m+5(m khác 1/2).có đồ thị là đường thẳng(d)
1)tìm m để (d) cát trục tung tại điểm có tung độ là -1
2)vẽ đồ thị hàm số tương ứng với giá trị m tìm được ở câu (1)
3)chứng minh đường thẳng(d) luôn đi qua một điểm cố định với mọi giá trị của m
1) Để (d) cắt trục tung tại điểm có tung độ là -1 nên Thay x=0 và y=-1 vào hàm số y=(2m-1)x-3m+5, ta được:
\(\left(2m-1\right)\cdot0-3m+5=-1\)
\(\Leftrightarrow-3m+5=-1\)
\(\Leftrightarrow-3m=-1-5=-6\)
hay m=2(nhận)
Vậy: Khi m=2 thì (d) cắt trục tung tung tại điểm có tung độ bằng -1
Mọi người giúp mình với, mình đang cần gấp ;(((
Hãy chứng minh: y=(m2-3m)x2+(2m2+m)x+3 là hàm số bậc nhất với m có giá trị là bao nhiêu?
Hàm số bậc nhất \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m^2+m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-3\right)=0\\m\left(2m+1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\\\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=3\)
Câu 1: Cho hàm số y = (3m + 5) x\(^2\) với m \(\ne\) \(\dfrac{-5}{3}\). Tìm các giá trị của tham số m để hàm số:
a) Nghịch biến với mọi x > 0
b) Đồng biến với mọi x >0
c) Đạt giá trị lớn nhất là 0
d) Đạt giá trị nhỏ nhất là 0
Câu 2: Cho hàm số y = \(\left(\sqrt{3k+4}-3\right)x^2\) với k \(\ge\dfrac{-4}{3}\); k \(\ne\dfrac{5}{3}\)
Tính các giá trị của tham số K để hàm số:
a) Nghịch biến với mọi x >0
b) Đồng biến với mọi x >0
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
1) cho hàm số y = (m+5) x + 2m -10... a) tìm m để hàm số trên là hàm số bậc nhất... b) chứng minh rằng đồ thị hàm số luôn đi qua một điểm cố định với mọi m
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)
1) cho hàm số y = (m+5) x + 2m -10... a) tìm m để hàm số trên là hàm số bậc nhất... b) chứng minh rằng đồ thị hàm số luôn đi qua một điểm cố định với mọi m
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)