Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Kuro Kazuya
19 tháng 4 2017 lúc 18:28

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\c+d\ge2\sqrt{cd}\end{matrix}\right.\)

\(\Rightarrow a+b+c+d\ge2\left(\sqrt{ab}+\sqrt{cd}\right)\)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\) (1)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\sqrt{ab}+\sqrt{cd}\ge2\sqrt{\sqrt{abcd}}=2\sqrt[4]{abcd}\)

\(\Rightarrow\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\dfrac{2\sqrt[4]{abcd}}{2}=\sqrt[4]{abcd}\) (2)

Từ (1) và (2)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\sqrt[4]{abcd}\)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=d\)

N.T.M.D
Xem chi tiết
Thu Thao
5 tháng 5 2021 lúc 17:02

Áp dụng bđt AM - GM  cho a,b,c thực dương :

\(\left\{{}\begin{matrix}\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{b^2}=2b\\\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\\\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\end{matrix}\right.\)

\(\Leftrightarrow2.\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge\left(a+b+c\right)\)

Dấu "=" ⇔ a = b =c 

hoàng thiên
Xem chi tiết
Y
14 tháng 4 2019 lúc 15:34

a) \(a\le b\) \(\Rightarrow-a\ge-b\)

\(\Rightarrow-\frac{2}{3}a\ge-\frac{2}{3}b\) ( theo liên hệ giữa thứ tự và phép nhân )

\(\Rightarrow-\frac{2}{3}a+4\ge-\frac{2}{3}b+4\)

b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các biến đổi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

su_00
Xem chi tiết
Phạm Thế Mạnh
12 tháng 12 2015 lúc 23:19

Có:\(a+b+c+d\ge4\sqrt[4]{abcd}\)(BĐT Cô-si)
\(\Rightarrow\frac{a+b+c+d}{4}\ge\frac{4\sqrt[4]{abcd}}{4}=\sqrt[4]{abcd}\)
\(\Rightarrow\left(\frac{a+b+c+d}{4}\right)^4\ge abcd\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d\)

Yim Yim
Xem chi tiết
Akai Haruma
9 tháng 10 2017 lúc 13:43

Đề bài của bạn bị ngược dấu. Phải là \(2\sqrt{ab+bc+ac}\leq \sqrt{3}\sqrt[3]{(a+b)(b+c)(c+a)}\) 

Lời giải:

Lũy thừa 6, BĐT trên tương đương với \(2^6(ab+bc+ac)^3\leq 27[(a+b)(b+c)(c+a)]^2\) \((\star)\)

Thật vậy:

Áp dụng BĐT AM-GM: \((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

Do đó: \((a+b)(b+c)(c+a)=ab(a+b)+bc(b+c)+ac(a+c)+2abc=(a+b+c)(ab+bc+ac)-abc\)

\(\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}\)

\(\Leftrightarrow (a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)

Suy ra \([(a+b)(b+c)(c+a)]^2\geq \frac{64}{81}(a+b+c)^2(ab+bc+ac)^2\)

Mà theo hệ quả của BĐT AM-GM: \((a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow [(a+b)(b+c)(c+a)]^2\geq \frac{64}{27}(ab+bc+ac)^3\)

hay \(64(ab+bc+ac)^3\leq 27[(a+b)(b+c)(c+a)]^2\)

BĐT \((\star)\) được chứng minh. Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

Linh Trần Thị Mỹ
Xem chi tiết
Phan Cả Phát
14 tháng 4 2017 lúc 15:45

Ta sẽ dùng phép biến đổi tương đương nhé :

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(1)

\(\Leftrightarrow\dfrac{b+a}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+a\right)}{ab\left(a+b\right)}\ge\dfrac{4ab}{ab\left(a+b\right)}\)

Vì a,b là các số dương =) ab(a+b) > 0

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+2ab-4ab+b^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0 \)(luôn đúng) (2)

BĐT (2) luôn đúng mà các phép biến đổi trên là tương đương suy ra BĐT (1) đúng

Dấu "=" xảy ra khi và chỉ khi a = b

qwerty
14 tháng 4 2017 lúc 8:29

\(\\\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\\\)

Dùng Cauchy_Schwarz

Nguyễn Hùng Mạnh
Xem chi tiết
Dương Đình Quân
29 tháng 10 2016 lúc 22:15

Minh cũng đang bí bàu này

vvvvvvvv
Xem chi tiết
Uyên Ldol
Xem chi tiết
missing you =
19 tháng 5 2021 lúc 6:47

ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}< =>\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(a+b\right)\ge4\)

<=>\(1+\dfrac{a}{b}+\dfrac{b}{a}+1\ge4\)

Thật vậy:

áp dụng bdt Cô si 

=>\(1+\dfrac{a}{b}+\dfrac{b}{a}+1=2+\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2=4\)

vậy bất đăng thức xảy ra

dấu "=" xảy ra \(\Leftrightarrow\)a=b