Tìm các số nguyên x và y biết (x-2).(5-x)=|2y+4|+2
Tìm các số nguyên x , y , biết :
a. 3x=2y và x+y=10
b. x-2/ y+3=8/2 và y-x=-4
c. x/2=y/5 và x+2y=12
\(a,3x=2y\)và \(x+y=10\)
Ta cs : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{x}{2}=2\Leftrightarrow x=4\)
\(\Leftrightarrow\frac{y}{3}=2\Leftrightarrow y=6\)
\(c,\frac{x}{2}=\frac{y}{5}\)và \(x+2y=12\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{5}=\frac{x+2y}{2+2.5}=\frac{12}{12}=1\)
\(\Leftrightarrow\frac{x}{2}=1\Leftrightarrow x=2\)
\(\Leftrightarrow\frac{y}{5}=1\Leftrightarrow y=5\)
bạn k lm phần b hộ mình ak
ko ADTC dãy tỉ số = nhau đâu :((
\(b,\frac{x-2}{y+3}=\frac{8}{2}\)và \(y-x=-4\)
\(\frac{x-2}{8}=\frac{y+3}{2}\Leftrightarrow\frac{x-2}{8}=\frac{4y+12}{8}\)
\(\Leftrightarrow x-2=4y+12\)
\(\Leftrightarrow x-4y=12+2=14\Leftrightarrow x-4y=14\)
\(\Leftrightarrow x=14+4y\Leftrightarrow x=\frac{14y}{y}+\frac{4y}{1}\Leftrightarrow\frac{14y}{y}+\frac{4y}{y}=\frac{18y}{y}=18\)
Vậy x = 18
Thay x = 18
\(\frac{18-2}{y+3}=\frac{8}{2}\Leftrightarrow\frac{16}{y+3}=4\Leftrightarrow y+3=4\Leftrightarrow y=1\)
Vậy y = 1
Bài 1:
Tìm các số nguyên x,y biết;
a,x.(2y-1)=6y+5 b,xy-2x+3y=4
Bài 2: Tìm các số tự nhiên x,n và số nguyên tố p,q biết:
a,pq+13;5p+q đều là số nguyên tố
b,(x^2+4x+32)(x+4)
tìm các số nguyên x và y biết
a) x(2y+1)=8
b) (2x-1) (y-2)=4
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố
tìm các số nguyên x,y biết:
a,2x+1/5=4/y
b,x+1/2=5/2y+1
a, 2x + 1/5 = 4/y
=> 2x/1 + 1/5 = 4/y
=> 10x/5 + 1/5 = 4/y
=> \(\frac{10x+1}{5}=\frac{4}{y}\)
=> 10xy + y = 20
=> y[10x + 1] = 20
Mà 10x + 1 lẻ
=> Ta có 4 trường hợp:
TH1: 10x + 1 = -5
=> 10x = -6 => x = -3/5 [k là số nguyên]
TH2: 10x + 1 = -1
=> 10x = -2 => x = -1/5 [k là số nguyên]
TH3: 10x + 1 = 1
=> 10x = 0 => x = 0 => y[10x + 1] = y[0 + 1] = 20 => y = 20.
TH4: 10x + 1 = 5
=> 10x = 4 => x = 2/5 [k là số nguyên]
b,
x + 1/2 = 5/2y + 1
=> \(\frac{2xy+x}{2y+1}+\frac{1}{2}=\frac{5}{2y+1}\)
\(\Rightarrow\frac{2xy+x}{2y+1}-\frac{5}{2y+1}=\frac{1}{2}\)
\(\Rightarrow\frac{2xy+x-5}{2y+1}=\frac{1}{2}\)
=> 4xy + 2x - 10 = 2y + 1
=> 4xy + 2x - 9 = 2y
=> x[4y+2] - 9 = 2y
=> x[4y+2] - 2y = 9
Mà 4y chẵn => 4y + 2 chẵn
=> x[4y+2] chẵn
=> x[4y+2] - 2y chẵn
Mà 9 lẻ
=> x[4y+2] - 2y \(\ne9\)
Vậy x,y k thỏa
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
bài 1 : tìm các số x, y , z , t biết :
x/2 = y/3 ; 7x = 2t ; z/t = 5/7 và y+ 2z + 3t = 10z
bài 2 : tìm các số x , y biết a , x:y = 4:7 và x +y = 44
b, x/2 = y/5 và x + y = 28
bài 3 : cho M = x + 2y - 3z / x - 2y + 3z . tính giá trị của M biết x ,y , z tỉ lệ với 5 ; 4 ; 3
bài 4 : cho a/b = c/d . chứng minh a+3b/b = c+3d/d
( các tỉ số đều có nghĩa )
làm nhanh cho mình 4 bài này với
cảm ơn các friends nhiều
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
1 ) Tìm số nguyên tố p , sao cho - + 2 và p + 4 cũng là các số nguyên tố ?
2 )Tổng của 2 số nguyên tố có thể bằng 2009 được không ? Tại sao ?
3 ) Tìm các số nguyên tố x và 7 , biết :
a ) ( 2x + 1 ) ( y + 3 ) = 10
b ) ( x + 1 ) ( 2y - 1 ) = 12
c ) x - 3 = y ( x + 2 )
d )( x + 6 ) =y ( x - 1 )
e ) ( 3x - 2 ) ( 2y - 3 ) = 1
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
3)
a) (2x + 1)(y + 3) = 10
=> 2x + 1 và y + 3 là các ước của 10
Ư(10) = {1; 2; 5; 10}
Lập bảng giá trị:
2x + 1 | 1 | 10 | 2 | 5 |
y + 3 | 10 | 1 | 5 | 2 |
x | 0 | 4,5 | 0,5 | 2 |
y | 7 | -2 | 2 | -1 |
Đối chiếu điều kiện x,y ∈ N
=> x = 0, y = 7
Vậy x = 0, y = 7