Bài 1 : Cho ∆ABC. Qua A vẽ đường thẳng a song song với BC. Qua B vẽ đường thẳng b song song với AC. Gọi D là giao điểm của a và b. Chứng minh : ACBD là hình bình hành.
bài 1: Cho tam giác ABC gọi D là điểm nằm giữa B và C, qua D vẽ DE // BC và DF // AC
a/ chứng minh tứ giác AEDF là hình bình hành.
b/ Khi nào thì hình bình hành AEDF là hình thoi, hình vuông.
bài 2: cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm AC, K đối xứng với M qua I.
a/ chứng minh AMCK là hình chữ nhật.
b/ điều kiện của tam giác ABC để AMCK là hình vuông.
bài 3: Cho hình thoi ABCD, O là giao điểm hai đường chéo. Qua B vẽ đường thẳng song song với AC, qua C vẽ đường thẳng song song với BD, hai đường thẳng đó cắt nhau tại K.
a/ chứng kinh OBKC là hình vuông.
b/ chứng minh AB = OK.
c/ điều kiện của tứ giác ABCD để OBKC là hình vuông.
```````````` Giúp mk phần b bài 1 và bài 2, phần c bài 3 `````````````````
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A
Cho tam giác ABC có AB=AC và M là trung điểm của cạnh BC
a)Chứng minh tam giác AMB= tam giác AMC
b)Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC
c)Qua C, vẽ đường thẳng b song song với AM . Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC =tam giác CNA
d)Gọi T là trung điểm của đoạn thăng AC .Chứng minh I là trung điểm của đoạn thẳng MN
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)
BÀI 1: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm của AB, AC, BC. Chứng minh BDEF là hình bình hành và suy ra
BÀI 2: Cho hình bình hành ABCD (AB < CD). Tia phân giác của góc A cắt BC tại I, tia phân giác góc C cắt AD tại K. Chứng minh: AICK là hình bình hành.
BÀI 3: Cho tam giác ABC. Đường thẳng qua B song song với AC cắt đường thẳng qua C song song với AB ở D.
a) Chứng minh rằng tư giác ABDC là hình bình hành.
b) Gọi M là trung điểm cạnh BC. Chứng minh rằng ba điểm A, M, D thẳng hàng.
Bài 5:(2,5đ) Cho △ABC cân tại.A. Gọi M là trung điểm của BC a) Chứng minh: △AMB = △AMC. b) (TH)Trên cạnh AB lấy điểm D ( DA > DB). Qua D vẽ đường thẳng song song với BC cắt AC tại E. Chứng minh: △ADE cân. c) Qua C vẽ đường thẳng song song với ME cắt tia AM tại K. Chứng minh: DM ⫽ BK.
a: Xét ΔAMB và ΔAMC có
MA chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: góc ADE=góc ABC
góc AED=góc ACB
góc ABC=góc ACB
=>góc ADE=góc AED
=>ΔAED cân tại A
c: Xet ΔAKC co ME//KC
nên ME/KC=AE/AC=AM/AK
=>AD/AB=AM/AK
=>DM//BK
Bài 5:(2,5đ) Cho △ABC cân tại.A. Gọi M là trung điểm của BC a) Chứng minh: △AMB = △AMC. b) (TH)Trên cạnh AB lấy điểm D ( DA > DB). Qua D vẽ đường thẳng song song với BC cắt AC tại E. Chứng minh: △ADE cân. c) Qua C vẽ đường thẳng song song với ME cắt tia AM tại K. Chứng minh: DM ⫽ BK.
Bài 5:(2,5đ) Cho △ABC cân tại.A. Gọi M là trung điểm của BC a) Chứng minh: △AMB = △AMC. b) (TH)Trên cạnh AB lấy điểm D ( DA > DB). Qua D vẽ đường thẳng song song với BC cắt AC tại E. Chứng minh: △ADE cân. c) Qua C vẽ đường thẳng song song với ME cắt tia AM tại K. Chứng minh: DM ⫽ BK.
#Toán lớp 7cần câu c nhất ấy, mn giải chi tiết giúp mình với, mình cần gấp lắm
Cho hình bình hành ABCD, gọi O là giao của hai đường chéo. Vẽ đường thẳng qua B và
song song với AC, vẽ đường thẳng qua A và song song với BD, hai đường thẳng đó cắt nhau ở K.
1) Tứ giác AKBO, AKOD là hình gì ? Vì sao?
2) Hình bình hành ABCD là hình gì nếu tứ giác AKBO là:
a) Hình chữ nhật ?
b) Hình thoi ?
c) Hình vuông ?
7. Cho tam giác ABC. Đường thẳng qua A song song với BC cắt đường thằng qua C song song với AB ở D. Gọi M là giao điểm của BD và AC. a) Chứng minh ABC CDA b) Chứng minh M là trung điểm của AC. c) Đường thẳng d qua M cắt các đoạn thẳng AD, BC lần lượt ở I, K. Chứng minh M là trung điểm của IK.
a: Xét ΔABC và ΔCDA có
\(\widehat{ACB}=\widehat{CAD}\)
AC chung
\(\widehat{CAB}=\widehat{ACD}\)
Do đó: ΔABC=ΔCDA
b: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
Suy ra: Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
hay M là trung điểm của AC
c: Xét ΔAMI và ΔCMK có
\(\widehat{IAM}=\widehat{KCM}\)
AM=CM
\(\widehat{AMI}=\widehat{CMK}\)
Do đó: ΔAMI=ΔCMK
Suy ra: MI=MK
mà M,I,K thẳng hàng
nên M là trung điểm của IK