7+71+72+...+72016+72017
1, D=7+72+73+...........+72016.Tìm chữ số tận cùng của D.D có phải là số chính phương không?Vì sao?
Kết quả của phép tính (72018 + 72017): 72017 là
\(=7^{2017}\left(7+1\right):7^{2017}=8\)
A= 70(71^9+71^8+71^7+...+71^2+72)
Đặt B=719+718+717+...+712+71
71B=7110+719+718+717+...+712
71B-B=7110-71
70B=7110-71=>B=\(\frac{71^{10}-71}{70}\)
Ta có A=70.\(\frac{71^{10}-71}{70}\)
=7110-71
Cái chỗ ta có A=... tớ nhân với 70 rồi còngif
1, D=7+72+73+...........+72016.Tìm chữ số tận cùng của D.D có phải là số chính phương không?Vì sao?
2,Tìm số chính phương có dạng abcd biết bc chia hết cho 13
3,Cho E=11111.....11 (2n chữ số 1) - 777......7 (n chữ số 7).Tìm n để E là số chính phương
4,C=1111......1121(2016 chữ số 1 và 21).C có phải là số chính phương không
1, D=7+72+73+...........+72016.Tìm chữ số tận cùng của D.D có phải là số chính phương không?Vì sao?
2,Tìm số chính phương có dạng abcd biết bc chia hết cho 13
3,Cho E=11111.....11 (2n chữ số 1) - 777......7 (n chữ số 7).Tìm n để E là số chính phương
4,C=1111......1121(2016 chữ số 1 và 21).C có phải là số chính phương không
Tính tổng của A = 7 + 71 + 72 + 73 + .... + 7100
\(A=7+7+7^2+...+7^{100}\)
\(7A=7^2+7^2+7^3+...+7^{101}\)
\(A=14+7^2+7^{101}\)
Em xem thử lại đề bài nhé
Câu 7. Cho:
S 71 72 73 ... 72024 72025
Chứng minh 𝑆 ⋮ 2 và 𝑆 ⋮ 57
Để chứng minh S chia hết cho 2 và S chia hết cho 57, ta sẽ xem xét từng thành phần trong công thức của S.
Đầu tiên, ta xét dãy từ 71 đến 72025. Trong dãy này, có 72025 - 71 + 1 = 71955 số.
Ta biết rằng nếu một số chia hết cho 2, thì số đó là số chẵn. Trong dãy từ 71 đến 72025, ta có 2 số lẻ liên tiếp (71 và 72), sau đó là 2 số chẵn liên tiếp (73 và 74), và tiếp tục lặp lại quy luật này. Vì vậy, trong 71955 số này, ta có 71955/2 = 35977.5 cặp số chẵn và lẻ.
Do đó, tổng của các số chẵn trong dãy này là 35977.5 * 2 = 71955.
Tiếp theo, ta xét số 72024. Ta biết rằng 72024 chia hết cho 2.
Cuối cùng, ta xét số 72025. Ta biết rằng 72025 chia hết cho 57, vì 72025 = 57 * 1265.
Vậy tổng S chia hết cho 2 và chia hết cho 57.
Các bạn giúp mình giải bài 71, 72, 73 trong sách bài tập toán 7 tập một nhé
Bài 71 :
Tam giác AHB = tam giác CKA ( c . g . c )
=> AB = CA , tam giác BHA = tam giác ACK
Ta lại có : Tam giác ACK + tam giác CAK = 90 độ
Nên tam giác BAH + tam giác CAK = 90 độ
Do đó tam giác BAC = 90 độ
Vậy tam giác ABC là tam giác vuông tại A
Bài 72
Xếp tam giác đều : Xếp tam giác với mỗi cạnh là bốn que diêm
Một tam giác cân mà ko đều : 2 cạnh bên 5 que diêm , cạnh đáy 2 que
Xét tam giác vuông : xếp tam giác có cạnh lần lượt là : ba , bốn , năm que diêm
Bài 73 ;
So sánh AC + CD vào 2 x BA
+ Xét tam giác AHB vuông tại H ,ta có :
AB2 = AH2 + HB2 ( định lý PItago )
=> HB2 =AB2 - AH2
=> HB2 = 5 - 3 = 25 - 9 =16 ( định lý Pitago )
=> HB= 4 ( vì HB > 0 )
+ Vì H nằm giữa B và C => :
HC = BC - HB = 10 - 4 = 6
+ Xét tam giác AHC vuông tại H , ta có
AC = AH + HC ( ĐỊNH LÝ PITAGO )
AC = 3 + 6 = 9 + 36 = 45
=> AC = 45 ( vì AC > 0 )
hay AC = 6,71
a) 71, 24 = 71, x4
x = .............
b) 5x8, 72 = 598, 72
x = ............
a) 71,24 = 71,24
=> x =4
b ) x = 9
k mk
47. ( 59 – 71 ) – 71 . ( -59 – 47 ) + 72 . 59
47.(59 - 71) - 71.( -59 - 47) + 72.59
= 47.59 - 47.71 + 71.59 + 71.47 + 72.59
= (47.59 + 71.59 + 72.59 ) - (47.71 - 47.71)
= 59.(47 + 71 + 72) - 0
= 59.190
= 11210
47. (-12)-71.(-106)+72.59
=-564+7526+4248
=6962+4248
=11210
47. (-12)-71.(-106)+72.59
=-564-7526+4248
=-8087+4248
=-3839