cho pt: m \(\sin^2x\) - 3 \(\sin x.\cos x\) -m - 1 = 0.
Tìm m để pt có đúng 3 no thuộc (0; \(\frac{3\pi}{2}\))_
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
b.
\(\Leftrightarrow\dfrac{3}{2}\left(1-cos2x\right)-sin2x+m=0\)
\(\Leftrightarrow sin2x+\dfrac{3}{2}cos2x-\dfrac{3}{2}=m\)
\(\Leftrightarrow\dfrac{\sqrt{13}}{2}\left(\dfrac{2}{\sqrt{13}}sin2x+\dfrac{3}{\sqrt{13}}cos2x\right)-\dfrac{3}{2}=m\)
Đặt \(\dfrac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)
\(\Rightarrow\dfrac{\sqrt{13}}{2}sin\left(2x+a\right)-\dfrac{3}{2}=m\)
Phương trình có nghiệm khi và chỉ khi:
\(\dfrac{-\sqrt{13}-3}{2}\le m\le\dfrac{\sqrt{13}-3}{2}\)
Lý thuyết đồ thị:
Phương trình \(f\left(x\right)=m\) có nghiệm khi và chỉ khi \(f\left(x\right)_{min}\le m\le f\left(x\right)_{max}\)
Hoặc sử dụng điều kiện có nghiệm của pt lương giác bậc nhất (tùy bạn)
a.
\(\dfrac{\sqrt{3}}{2}\left(1-cos2x\right)+\dfrac{1}{2}sin2x=m\)
\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{3}}{2}=m\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)+\dfrac{\sqrt{3}}{2}=m\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi:
\(-1+\dfrac{\sqrt{3}}{2}\le m\le1+\dfrac{\sqrt{3}}{2}\)
c.
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x+\left(m-1\right)sin2x-\left(m+1\right)\left(\dfrac{1}{2}+\dfrac{1}{2}cos2x\right)=m\)
\(\Leftrightarrow\left(2m-2\right)sin2x-\left(m+2\right)cos2x=3m\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt có nghiệm khi:
\(\left(2m-2\right)^2+\left(m+2\right)^2\ge9m^2\)
\(\Leftrightarrow m^2+m-2\le0\)
\(\Leftrightarrow-2\le m\le\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(^{ }\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
a) \(\sqrt{3}\left(\dfrac{1+cos2x}{2}\right)+\dfrac{1}{2}sin2x=m\) ↔ \(\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=m-\dfrac{\sqrt{3}}{2}\)
→\(\sqrt{3}cos2x+sin2x=2m-\sqrt{3}\) ↔ \(2cos\left(\dfrac{\pi}{6}-2x\right)=2m-\sqrt{3}\)
→\(cos\left(\dfrac{\pi}{6}-2x\right)=m-\dfrac{\sqrt{3}}{2}\)
Pt có nghiệm khi và chỉ khi \(-1\le m-\dfrac{\sqrt{3}}{2}\le1\)
b) \(\left(3+m\right)sin^2x-2sinx.cosx+mcos^2x=0\)
cosx=0→ sinx=0=> vô lý
→ sinx#0 chia cả 2 vế của pt cho cos2x ta đc:
\(\left(3+m\right)tan^2x-2tanx+m=0\)
pt có nghiệm ⇔ △' ≥0
Tự giải phần sau
c) \(\left(1-m\right)sin^2x+2\left(m-1\right)sinx.cosx-\left(2m+1\right)cos^2x=0\)
⇔cosx=0→sinx=0→ vô lý
⇒ cosx#0 chia cả 2 vế pt cho cos2x
\(\left(1-m\right)tan^2x+2\left(m-1\right)tanx-\left(2m+1\right)=0\)
pt có nghiệm khi và chỉ khi △' ≥ 0
Tự giải
Tìm điều kiện để pt sau có nghiệm
a) \(3\sin x+m-1=0\)
b) \(4\cos^2x=m+3\)
c) \(2m\sin x+1=3m\)
a) 3sinx= 1-m => \(-3\le1-m\le3\) \(\Leftrightarrow-2\le m\le4\)
b, \(4cos^2x=m+3\)
\(\Leftrightarrow4cos^2x-2=m+1\)
\(\Leftrightarrow2cos2x=m+1\)
\(\Leftrightarrow cos2x=\dfrac{m+1}{2}\)
Phương trình có nghiệm khi:
\(-1\le\dfrac{m+1}{2}\le1\)
\(\Leftrightarrow-2\le m+1\le2\)
\(\Leftrightarrow-3\le m\le1\)
a, \(3sinx+m-1=0\)
\(\Leftrightarrow sinx=\dfrac{1-m}{3}\)
Phương trình có nghiệm khi:
\(-1\le\dfrac{1-m}{3}\le1\)
\(\Leftrightarrow-3\le1-m\le3\)
\(\Leftrightarrow-2\le m\le4\)
1.Cho pt x2-2(m+1)x + m-2=0, với x là ẩn số, m thuộc R
a, Giải pt khi m=-2
b, Giải sử pt đã cho có 2 nghiệm phân biệt x1, x2. tìm hệ thức liên hệ giữa x1 và x2 mà ko phụ thuộc vào m
2. cho pt: x2-2(m-3)x-1=0
Tìm m để pt có nghiệm x1, x2 mà biểu thức a=x21 - x1x2 + x22 đạt giá trị nhỏ nhất? tìm gia trị nhỏ nhất đó
1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho
b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\); \(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)
=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m
2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb
áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\); \(x1.x2=-1\)
câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha
sửa đề rồi liên hệ để mình làm tiếp nha
Cho pt bậc hai với m là tham số:
x2-2x+m=0
Tìm m để pt có nghiệm
Tìm m để pt có 2 nghiệm x1,x2 thoả mãn x1- 2x2=5
đầu tiên bn tính đenta
cho đenta lớn hơn hoặc = 0 thì pt có nghiệm
b, từ x1-2x2=5
=> x1=5+2x2
chứng minh đenta lớn hơn 0
theo hệ thức viet tính đc x1+x2=..
x1*x2=....
thay vào cái 1 rồi vào 2 là đc
22. Tìm nghiệm dương nhỏ nhất của PT: \(3\sin^2x+2\sin x\cos x-\cos^2x=0\)
23. Giải PT: \(\sqrt{3}\cos x+2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{1}\right)=1\)
\(\sqrt{3}cosx+2sin^2\left(\dfrac{x}{2}-\pi\right)=1\)
\(\Leftrightarrow\sqrt{3}cosx+2sin^2\dfrac{x}{2}=1\)
\(\Leftrightarrow\sqrt{3}cosx-cosx=0\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) ( k thuộc Z )
Vậy ...
22.
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(3tan^2x+2tanx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)
Nghiệm dương nhỏ nhất của pt là: \(x=arctan\left(\dfrac{1}{3}\right)\)
22. PT đã cho tương đương
3 - 4cos2x + 2 sinxcosx = 0
⇔ 3 - 2 - 2cos2x + sin2x = 0
⇔ 1 - 2cos2x + sin2x = 0
⇔ 1 + sin2x = 2cos2x
⇔ sin\(\dfrac{\pi}{2}\) + sin2x = 2cos2x
⇔ \(2sin\left(\dfrac{\pi}{4}+x\right).cos\left(\dfrac{\pi}{4}-x\right)\) = 2cos2x
Do \(\left(\dfrac{\pi}{4}-x\right)+\left(\dfrac{\pi}{4}+x\right)=\dfrac{\pi}{2}\)
⇒ \(sin\left(\dfrac{\pi}{4}+x\right)=cos\left(\dfrac{\pi}{4}-x\right)\)
Vậy sin2\(\left(x+\dfrac{\pi}{4}\right)\) = cos2x
Cái này là hiển nhiên ????
Bài 1: cho pt: x^2 -mx+m-2=0
a) tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^2+x2^2=7
b)tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^3+x2^3=18
bài 2: cho pt x^2 -2mx+m^2- 4=0
tìm m để pt đã cho có 2 nghiệm phân biệt:
a) x2=2x1 b) 3x1+2x2=7
Câu1:Tìm nghiệm xϵ(-3π/2;4x) của pt:Sin(2x-π/4)=1
Câu2:Giải pt: Sin(x^2-4x)=0
Câu3:Giải pt: Cos(Sin x)=1
cho pt: (m-1)\(x^2\)+2(m-1)x-m=0 Tìm m để pt có 2 nghiệm phân biệt đều âm
- Với \(m=1\) pt vô nghiệm (ktm)
- Với \(m\ne1\) pt có 2 nghiệm pb đều âm khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+m\left(m-1\right)>0\\x_1+x_2=-2< 0\left(luôn-đúng\right)\\x_1x_2=\dfrac{-m}{m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m-1\right)>0\\\dfrac{m}{m-1}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\0< m< 1\end{matrix}\right.\) \(\Rightarrow0< m< \dfrac{1}{2}\)