Cho tam giác ABC cân tại A, đường cao AH và BK cắt nhau tại I. CMR: HK là tiếp tuyến của đường tròn đường kính AI.
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a, Đường tròn đường kính AI đi qua K
b, HK là tiếp tuyến của đường tròn đường kính AI
a, Chứng minh được B K A ^ = 90 0
b, Gọi O là trung điểm AI
Ta có:
+ OK = OA => O K A ^ = O A K ^
+ O A K ^ = H B K ^ (cùng phụ A C B ^ )
+ HB = HK => H B K ^ = H K B ^
=> O K A ^ = H K B ^ ⇒ H K O ^ = 90 0
Cho tam giác ABC cân tại , các đường cao AH bà BK cắt nhau tại I. Chứng minh HK là tiếp tuyến của đường tròn đường kính AI
a: Vì góc AKI=90 độ
nên K nằm trên đường tròn đường kính AI
b: Gọi G là trung điểm của AK
góc GKH=góc GKI+góc HKI
=góc GIK+góc HBI
=góc BIH+góc HBI=90 độ
=>HK là tiếp tuyến của (G)
Cho tam giác cân ABC tại A; đường cao AH và BK cắt nhau tại I. Khi đó đường thẳng nào sau đây là tiếp tuyến của đường tròn đường kính AI
A. HK
B. IB
C. IC
D. AC
Đáp án A
Gọi O là trung điểm AI. Xét tam giác vuông AIK có
Xét tam giác OKA cân tại O (vì OA=OK=R) có:
O K A ^ = O A K ^ (1)
Xét tam giác CKB vuông tại K (vì K B ⊥ A C ) có:
H là trung điểm CB (vì tam giác ABC cân tại A có AH là đường cao nên đồng thời là đường trung tuyến)
⇒ KH là trung tuyến ứng với cạnh huyền BC
⇒ H K C ^ = H C K ^ ( 2 )
Từ (1) và (2) suy ra O K A ^ + H K C ^ = O A K ^ + H C K ^ = 90 o (vì A H ⊥ B C )
Mà O K A ^ + H K C ^ + O K H ^ = 180 o ⇒ O K H ^ = 90 o ⇒ O K ⊥ K H (**)
Từ (*) và (**) suy ra HK là tiếp tuyến của (O)
Cho tam giác cân ABC tại A; đường cao AH và BK cắt nhau tại I. Khi đó đường thẳng nào sau đây là tiếp tuyến của đường tròn đường kính AI
A. HK
B. IB
C. IC
D. AC
Chọn đáp án A
Gọi O là trung điểm AI. Xét tam giác vuông AIK có
Từ (*) và (**) thì HK là tiếp tuyến của đường tròn đường kính AI
Cho tam giác ABC cân Tại A đường cao AH và BK cắt nhau tại I
a) Chứng minh tam giác BKH cân tại H
b) Gọi O là trung điểm của AI .Chứng Minh góc BKH = góc IAK
c) Chứng minh HK là tiếp tuyến của đường tròn tâm O
a: Ta có: ΔBKC vuông tại K
mà KH là trung tuyến
nên KH=BH
=>ΔHBK cân tại H
b: góc BAH=90 độ-góc ABC
góc IAK=90 độ-góc ACB
mà góc ABC=góc ACB
nên góc BAH=góc IAK
c: Gọi G là trung điểm của AI
góc GKH=góc GKI+góc HKI
=góc GIK+góc HBI
=góc BIH+góc HBI=90 độ
=>HK là tiếp tuyến của (G)
cho tam giác abc cân tại a đường cao ah và bk bk cắt ah tại i cm hk là tiếp tuyến
Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn tâm I đường kính BH cắt AB tại E, đường tròn tâm O đường kính CH cắt AC tại F. CMR:
a, AH là tiếp tuyến chung của hai đường tròn (I) và (O) tại H.
b, EF là tiếp tuyến của (I) tại E, tiếp tuyến của (O) tại F.
Cho tam giác ABC vuông tại A; đường cao AH. Vẽ đường tròn (A; AH). Gọi HD là đường kính của đường tròn đó. Tiếp tuyến của đường tròn D cắt CA ở E.
a. CMR BE tiếp xúc với đường tròn (A) tại một điểm gọi là I và IA là tiếp tuyến của đường tròn đường kính BC.
b. EA cắt đường tròn (A) tại T và S(ET<ES) và cắt DI tại N. CM T là tâm đường tròn nội tiếp của tam giác EDI và TN.SE=TE.SN.
c/ Đường thẳng vuông góc với ED tại E cắt đường thẳng AI tại M. CM AE2=2AI.AM
mn giúp e với ạ, e đang cần gấp
Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH. Chứng minh rằng: DE là tiếp tuyến của đường tròn (O).
Ta có : OH = OE
Suy ra tam giác OHE cân tại O
Trong tam giác BDH ta có:
Từ (1), (2) và (3) suy ra:
Tam giác ABC cân tại A có AD ⊥ BC nên BD = CD
Tam giác BCE vuông tại E có ED là đường trung tuyến nên:
ED = DB = BC/2 (tính chất tam giác vuông)
Suy ra tam giác BDE cân tại D
Suy ra: DE ⊥ EO. Vậy DE là tiếp tuyến của đường tròn (O).