Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Đinh Khánh
Xem chi tiết
An Đinh Khánh
23 tháng 6 2023 lúc 10:09

Help me plsssssssssss

Phùng Công Anh
23 tháng 6 2023 lúc 10:13

Ta có: `a^2+2023=a^2+ab+bc+ca=a(a+b)+c(a+b)=(a+b)(c+a)`

Do vai trò ba biến `a,b,c` như nhau nên ta có: `b^2+2023=(b+c)(a+b);c^2+2023=(c+a)(b+c)`

`=>A=\sqrt(((a+b)(b+c)(c+a))^2)=|(a+b)(b+c)(c+a)|\inQQ`

Đinh Trí Gia BInhf
23 tháng 6 2023 lúc 10:17

Ta có: a2+2023 = a2+ab+bc+ca
                         = a(a+b) + c(b+a)
                         = (a+b)(a+c)
CM tương tự ta đc: b2+2023= (b+c)(b+a)
                                c2+2023 = (c+a)(c+b)

 Ta được: A= \(\sqrt{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)                A= \(\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)
                A= \(\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\)
Vì a,b,c là các số hữu tỉ (đb) nên (a+b)(a+c)(b+c) là các số hữu tỉ (đpcm)
 

Thành Lê Doãn
Xem chi tiết
Le Thi Khanh Huyen
30 tháng 10 2016 lúc 11:34

Ta có :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)

\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(=\left[\left(a^2+ab\right)+\left(bc+ca\right)\right]\left[\left(b^2+ab\right)+\left(bc+ca\right)\right]\left[\left(c^2+bc\right)+\left(ab+ca\right)\right]\)

\(=\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Vậy ...

nguyen xuan thinh
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
30 tháng 8 2019 lúc 11:20

\(ab+bc+ac=1\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)

\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

huongkarry
Xem chi tiết
Đinh quang hiệp
23 tháng 6 2018 lúc 8:39

\(P=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ca+ab+bc\right)}\)

\(=\sqrt{\left(a\left(a+b\right)+c\left(a+b\right)\right)\left(b\left(a+b\right)+c\left(a+b\right)\right)\left(c\left(a+c\right)+b\left(a+c\right)\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

vì a,b,c là sô số hữu tỉ\(\Rightarrow a+b,a+c,b+c\)là số hữu tỉ \(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)\)là số hữu tỉ

\(\Rightarrow P\)là số hữu tỉ   (đpcm)

Vân Trang Nguyễn Hải
Xem chi tiết
Chippy Linh
27 tháng 9 2017 lúc 17:23

Với ab + ac + bc = 1

Ta có: \(a^2+1=a^2+ab+ac+bc=\left(a^2+ab\right)+\left(ac+bc\right)=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

tương tự ta có: \(b^2+1=\left(b+a\right)\left(b+c\right)\)

\(c^2+1=\left(c+a\right)\left(c+b\right)\)

Do đó: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)

\(=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)

= \(\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\) (đpcm)

Big City Boy
Xem chi tiết
Vân Trần Thị
Xem chi tiết
tthnew
30 tháng 10 2019 lúc 19:27

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\) là một số hữu tỉ (đpcm)

P/s:Em ko chắc!

Khách vãng lai đã xóa
phan le bao thi
Xem chi tiết

Thay 1= 4(ab+bc+ca), Ta có: 

\(\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)

\(=4\left(ab+bc+ca+a^2\right).4\left(ab+bc+ca+b^2\right).4\left(ab+bc+ca+c^2\right)\)

\(=64.\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)\)

\(=64\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

\(=\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mà a, b, c là số hữu tỉ 

\(\Rightarrow\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)là bình phương một số hữu tỉ 

\(\Rightarrow\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)là bình phương một số hữu tỉ

Big City Boy
Xem chi tiết