Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Handsome
Xem chi tiết
HoàngMiner
Xem chi tiết
Hoàng Chí Tiên
Xem chi tiết
Kaito Nguyen
Xem chi tiết
Trần Thị Loan
8 tháng 5 2015 lúc 17:27

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm

DoubleK2k6
Xem chi tiết
_little rays of sunshine...
Xem chi tiết
Nguyễn thành Đạt
15 tháng 9 2023 lúc 13:04

a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

\(\Rightarrow2ab\text{=}2bc+2ca\)

\(\Rightarrow2ab-2bc-2ca\text{=}0\)

Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)

\(\text{=}a^2+b^2+c^2\)

Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)

\(\Rightarrow A\text{=}a+b-c\)

Vì a;b;c là các số hữu tỉ suy ra : đpcm

b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)

Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)

Từ đây ta thấy giống phần a nên :

\(B\text{=}a+b-c\)

\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)

Suy ra : đpcm.

Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.

Lê Tuấn Phong
Xem chi tiết
Yeutoanhoc
29 tháng 6 2021 lúc 13:46

`(a+b)^2=2(a^2+b^2)`

`<=>(a+b)(a+b)=2a^2+2b^2`

`<=>a^2+ab+ab+b^2=2a^2+2b^2`

`<=>a^2+2ab+b^2=2a^2+2b^2`

`<=>a^2-2ab+b^2=0`

`<=>a^2-ab-ab+b^2=0`

`<=>a(a-b)-b(a-b)=0`

`<=>(a-b)(a-b)=0`

`<=>(a-b)^2=0`

`<=>a-b=0`

`<=>a=b`(điều phải chứng minh)

Đề này lớp 8 thì hợp hơn 

Nguyễn Lê Phước Thịnh
29 tháng 6 2021 lúc 13:47

Ta có: \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\)

hay a=b

 

(a+b)2=2(a2+b2)

(a+b)(a+b)=2a2+2b2

a2+ab+ab+b2=2a2+2b2

a2+2ab+b2=2a2+2b2

Phùng Tuấn Minh
Xem chi tiết
Almoez Ali
Xem chi tiết
Nguyễn Thành Long
19 tháng 3 2022 lúc 22:23

undefined

Nguyễn Việt Lâm
20 tháng 3 2022 lúc 11:59

\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)

Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)

Gọi vế trái của BĐT cần chứng minh là P:

\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)

\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)

Nanh
Xem chi tiết

Công ty cổ phần BINGGROUP © 2014 - 2024
Liên hệ: Hà Đức Thọ - Hotline: 0986 557 525 - Email: a@olm.vn hoặc hdtho@hoc24.vn