Cho a, b thoả mãn
a + b = 1
Chứng minh: a^2 + b^2 >= 1/2
cho a,b là hai số dương thoả mãn a+b=1 . Chứng minh 1\ab + 1\a^2+b^2 = 6
Cho 2 số a, b thoả mãn a + b = 1. Chứng minh rằng a^3 + b^3 + ab >= 1/2
cho các số thực a,b,c thoả mãn a^2+b^2+c^2+1/a^2+1/b^2+1/c^2=6 chứng minh rằng a^2012+b^2012+c^2012=3
Cho 0<a<1; 0<b<1; 0<c<1 thoả mãn a+b+c = 2, chứng minh: a^2 + b^2 + c^2 < 2
a2 + b2 + c2 < 2
<=> a2 + b2 + c2 < a+ b + c
<=> (a2 - a )+ (b2 - b )+ (c2 - c) < 0
<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0 (*)
Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1 vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0
tương tự b(b - 1) < 0; c(c -1) < 0
Vậy (*) => đpcm
Cho a,b,c là các số dương thoả mãn a+b+c=3 Chứng minh rằng 1/(4a^2+b^2+c^2)+1/(a^2+4b^2+c^2)+1/(a^2+b^2+4c^2)>=1/2
Bài 1 :
a) Cho 3 số hữu tỉ a,b,c thoả mãn : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\). Chứng minh rằng : \(A\text{=}\sqrt{a^2+b^2+c^2}\) là số hữu tỉ.
b) Cho 3 số x,y,z đôi một khác nhau . Chứng minh rằng : \(B\text{=}\sqrt{\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}}\) là một số hữu tỉ.
a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
\(\Rightarrow2ab\text{=}2bc+2ca\)
\(\Rightarrow2ab-2bc-2ca\text{=}0\)
Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)
\(\text{=}a^2+b^2+c^2\)
Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)
\(\Rightarrow A\text{=}a+b-c\)
Vì a;b;c là các số hữu tỉ suy ra : đpcm
b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)
Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
Từ đây ta thấy giống phần a nên :
\(B\text{=}a+b-c\)
\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)
Suy ra : đpcm.
Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.
Cho số thực a , b thoả mãn ( a + b )^2 = 2 ( a^2 + b^2 ) Chứng minh a = b
`(a+b)^2=2(a^2+b^2)`
`<=>(a+b)(a+b)=2a^2+2b^2`
`<=>a^2+ab+ab+b^2=2a^2+2b^2`
`<=>a^2+2ab+b^2=2a^2+2b^2`
`<=>a^2-2ab+b^2=0`
`<=>a^2-ab-ab+b^2=0`
`<=>a(a-b)-b(a-b)=0`
`<=>(a-b)(a-b)=0`
`<=>(a-b)^2=0`
`<=>a-b=0`
`<=>a=b`(điều phải chứng minh)
Đề này lớp 8 thì hợp hơn
Ta có: \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
hay a=b
Cho a,b thoả mãn √a +√b = 1.
Chứng minh rằng 64ab(a+b)2 nhỏ hơn hoặc bằng 1
C6. Cho các số thực dương thoả mãn: ab+1 nhỏ hơn hoặc bằng b Chứng minh rằng : ( a + (1/a^2) ) + ( b^2 + (1/b) ) lớn hơn hoặc bằng 9
\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)
Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)
Gọi vế trái của BĐT cần chứng minh là P:
\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)
\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)
cho a,b,c là 3 số dương thoả mãn 1/a + 1b + 1/c <=3 .chứng minh rằng a/(1+b^2) + b/(1+c^2) + c/(1+a^2) + 1/2(ab+bc+ca) >= 3