Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thái Hoàng Anh
Xem chi tiết
Đặng Ngọc Quỳnh
25 tháng 12 2020 lúc 19:30

\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)

\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)

Khách vãng lai đã xóa
Xem chi tiết
lâm pham
22 tháng 3 2022 lúc 16:14

x thuộc 2019 ; 2020

y=2021

prolaze
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2021 lúc 19:24

Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ

\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x

Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)

\(\Rightarrow y\ge2021\)

Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn

\(\Rightarrow y=2021\)

Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)

Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho

- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)

\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm

Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)

Trà Chanh ™
Xem chi tiết
Trà Chanh ™
22 tháng 10 2019 lúc 21:31

Tổng = 4042 nha !!!

Khách vãng lai đã xóa
Game Good
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 9:38

\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)

Vậy ...

Lấp La Lấp Lánh
12 tháng 11 2021 lúc 9:42

ĐKXĐ: \(3\ge x\ge1\)

Áp dụng BĐT Bunhiacopski:

\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)

Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)

Nên để thõa mãn yêu cầu bài toán thì

\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)

Trần Tiến Đạt
Xem chi tiết
Nguyễn Hà Tuấn Hưng 7A14
16 tháng 5 2022 lúc 19:56

(Nó có hơi dài dòng)

Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3 =

(x-z)^3= (2020 - 2022)^3 = -8

8(x-y)^2.(y-z)= 8(2020 - 2021)^2 . (2021 - 2022) = -8.

Vì (x-z)^3 = -8

 8(x-y)^2.(y-z) = -8

==> (x-z)^3 = 8(x-y)^2.(y-z)

zZz Cool Kid_new zZz
Xem chi tiết
Nguyễn Tấn Thuận
19 tháng 4 2020 lúc 11:12

A B C D E I K J H M O

gọi các điểm như trên hình

I là giao 2 đường tiếp tuyến HI và AC=>OI là phân giác góc EOK (1) và IE=IK

C là giao 2 tiếp tuyến AC và BC => OC là phân giác góc KOD (2) và KC=DC

(1) và (2) => tam giác IOC vuông tại O, có đường cao OK =>OK2=IK.KC <=> OK2=IE.DC

CM tương tự ta được OJ2 = EH.BD

\(\text{OK=OJ=r}\) 

=>\(\text{IE.DC=EH.BD}\)

=>\(\frac{EH}{EI}=\frac{CD}{BD}\)

Ta có : \(\text{HI // BC}\)

=>\(\frac{EI}{MC}=\frac{AI}{AC}=\frac{AH}{AB}=\frac{EH}{BM}\)

=> \(\frac{BM}{MC}=\frac{EH}{EI}\)

=>\(\frac{BM}{CM}=\frac{EH}{EI}=\frac{CD}{BD}\)

=> \(1+\frac{BM}{CM}=1+\frac{CD}{BD}\)\(\Leftrightarrow\frac{BC}{CM}=\frac{BC}{BD}\Rightarrow CM=BD\)

Khách vãng lai đã xóa
Nguyễn Gia Linh
19 tháng 4 2020 lúc 21:39

83110=Hello

Khách vãng lai đã xóa
Phạm Minh Trí
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
4 tháng 1 2021 lúc 12:38

Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)

Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)

Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)

Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)

Nguyễn Thị Khánh Hân
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 1 2022 lúc 10:11

\(x^2+y^2+z^2=xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z\\ \text{Mà }x+y+z=-3\Leftrightarrow x=y=z=-1\\ \Leftrightarrow B=1-1+1=1\)