Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm tnhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 22:34

b: Để phương trình vô nghiệm thì x-2=0

hay x=2

Để phương trình có nghiệm thì x-2<>0

hay x<>2

Nhók Lạnh Lùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 1:49

a: \(\Leftrightarrow mx-m^2+3m=mx-2m+6\)

\(\Leftrightarrow-m^2+5m-6=0\)

\(\Leftrightarrow\left(m-2\right)\left(m-3\right)=0\)

=>m=2 hoặc ,=3

b: Để phương trình là phương trình bậc hai một ẩn thì m+1<>0

hay m<>-1

\(\text{Δ}=\left(2m-2\right)^2-4\left(m+1\right)\left(m-2\right)\)

\(=4m^2-8m+4-4\left(m^2-m-2\right)\)

\(=4m^2-8m+4-4m^2+4m+8\)

=-4m+12

Để phương trình có hai nghiệm phân biệt thì -4m+12>0

=>-4m>-12

hay m<3

Để phương trình có nghiệm kép thì -4m+12=0

hay m=3

Để phương trình vô nghiệm thì -4m+12<0

hay m>3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 8 2018 lúc 6:32

m(x – 4) = 5x – 2 ⇔(m - 5)x = 4m - 2

Nếu m - 5 ≠ 0 ⇔ m ≠ 5 thì phương trình có nghiệm duy nhất

x = (4m - 2)/(m - 5)

Nếu m – 5 = 0 ⇔ m = 5, phương trình trở thành:

0.x = 18 ⇒ phương trình vô nghiệm

Vậy với m ≠ 5 phương trình có nghiệm duy nhất

x = (4m - 2)/(m - 5)

Với m = 5 phương trình vô nghiệm.

Tâm Cao
Xem chi tiết
Ngô Thành Chung
13 tháng 3 2021 lúc 19:42

Phương trình tương đương

\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)

Nếu m = 0 thì phương trình vô nghiệm

Nếu m ≠ 0 thì S = {m + 2}

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 2 2019 lúc 18:26

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Phương trình (1) ⇔ x = -3m + 2

    Phương trình (2) ⇔ 3x = m - 2 ⇔ x = (m - 2) / 3

    Vậy với mọi giá trị của m phương trình có nghiệm là:

     x 1  = -3m + 2 và x 2  = (m - 2) / 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2017 lúc 16:44

m(x – 2) = 3x + 1

⇔ mx – 2m = 3x + 1

⇔ mx – 3x = 1 + 2m

⇔ (m – 3).x = 1 + 2m (1)

     + Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

     + Xét m – 3 = 0 ⇔ m = 3, pt (1) ⇔ 0x = 7. Phương trình vô nghiệm.

Kết luận:

+ với m = 3, phương trình vô nghiệm

+ với m ≠ 3, phương trình có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 11:24

1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)

\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)

\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)

\(=4m^2-8m+4+4m^2-4m-24\)

\(=-12m-20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-12m-20>0\)

\(\Leftrightarrow-12m>20\)

hay \(m< \dfrac{-5}{3}\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow-12m-20=0\)

\(\Leftrightarrow-12m=20\)

hay \(m=\dfrac{-5}{3}\)

Để phương trình vô nghiệm thì Δ<0

\(\Leftrightarrow-12m-20< 0\)

\(\Leftrightarrow-12m< 20\)

hay \(m>\dfrac{-5}{3}\)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 11:26

2: ĐKXĐ: \(m\ne-2\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)

Ta có: \(x_1+x_2=x_1x_2\)

\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)

Suy ra: 2m-2=3-m

\(\Leftrightarrow2m+m=3+2\)

\(\Leftrightarrow3m=5\)

hay \(m=\dfrac{5}{3}\)(thỏa ĐK)

FREESHIP Asistant
Xem chi tiết
Thanh Hoàng Thanh
28 tháng 1 2022 lúc 15:58

\(m\left(x-m\right)\le4x+5.\left(1\right)\\ \Leftrightarrow mx-m^2-4x-5\le0.\\ \Leftrightarrow\left(m-4\right)x\le5+m^2.\circledast\)

+) Nếu \(m-4>0.\Leftrightarrow m>4.\)

Khi \(\circledast\) có nghiệm: \(x\le\dfrac{5+m^2}{m-4}.\)

+) Nếu \(m-4< 0.\Leftrightarrow m< 4.\)

Khi \(\circledast\) có nghiệm: \(x\ge\dfrac{5+m^2}{m-4}.\)

+) Nếu \(m-4=0.\) \(\Leftrightarrow m=4.\)

Thay vào \(\circledast\) ta có: 

\(0x\le5+4^2.\Leftrightarrow0x\le21\) (vô lý).

Kết luận: 

Với \(m>4\) thì (1) có tập nghiệm \(S=\) \((-\infty;\dfrac{5+m^2}{m-4}].\)

Với \(m< 4\) thì (1) có tập nghiệm \(S=\) \([\dfrac{5+m^2}{m-4};+\infty).\)

Với \(m=4\) thì (1) có tập nghiệm \(S=\) \(\phi.\)

 
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 1 2017 lúc 4:20

m = 0 phương trình trở thành

    -x - 2 = 0 ⇒ x = -2

    m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1

    Với m < -1/4 phương trình vô nghiệm;

    Với m ≥ -1/4 nghiệm của phương trình là

Giải sách bài tập Toán 10 | Giải sbt Toán 10