Chứng minh rằng ƯCLN( 6n + 1, 7n +1) =1
1 , chứng minh rằng
ƯCLN ( 3n +13 , 3n+14 ) = 1
ƯCLN ( 3n+15 , 6n+9) =1
a) gọi ƯCLN( 3n+13; 3n+14) = d \(\Rightarrow\hept{\begin{cases}3n+13⋮d\\3n+14⋮d\end{cases}\Rightarrow\left(3n+14\right)-\left(3n+13\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
b) \(\)sai đề
vì \(3n+15=3\left(n+5\right)⋮3\); \(6n+9=3\left(2n+3\right)⋮3\)
nên có ƯC( 3n+15; 6n+9)=3
a) Gọi d là ước chung nguyên tố của 3n + 13 và 3n + 14
=> 3n + 13 chia hết cho d ; 3n + 14 chia hết cho d
=> ( 3n+ 14 ) - ( 3n + 13 ) chia hết cho d
=> 1 chia hết cho d
=>d = 1 ( vì d là ƯCLN )
=> ƯCLN ( 3n + 13, 3n + 14 )
Vậy ƯCLN ( 3n + 13, 3n + 14 ) = 1
( câu b mình thấy sai sai thế nào ấy, bạn xem lại đề nhé )
chứng minh rằng với mọi số nguyên n thì phân số 7n+1/6n+1 là phân số tối giản
Gọi d=ƯCLN(7n+1;6n+1)
=>42n+6-42n-7 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Các bạn giúp mình với
a) Chứng minh rằng ƯCLN ( 5n+1; 6n+1 ) =1 ; n thuộc tập tự nhiên
b) Tìm ƯCLN (2n+1 ; 9n +6) ; n thuộc tập tự nhiên
MÌNH CẢM ƠN Ạ!!!
chứng minh rằng mọi số tự nhiên n thì 7n+1 và 6n+1 là hai số nguyên tố cùng nhau giải hộ mình
trả lời hộ mình
chứng minh rằng : phân số \(\frac{7n-1}{6n-1}\)là phân số tối giản với mọi N\(\varepsilon\)Z
Chứng minh rằng ƯCLN ( 2n+1 ; 6n+5 ) = 1
Các bạn giúp mình với!! Mình đang cần gấp.
Ai trả lời nhanh và đúng nhất thì mình tick cho!!!!!
Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )
=> 2n+1 và 6n+5 đều chia hết cho d
=> 3.(2n+1) và 6n+5 đều chia hết cho d
=> 6n+3 và 6n+5 đều chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 lẻ nên d lẻ
=> d=1
=> ƯCLN (2n+1;6n+5) = 1
=> ĐPCM
k mk nha
Gọi UCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d
6n+5 chia hết cho d
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d
\(\Rightarrow2\) chia hết cho d
\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2
\(\Rightarrowđpcm\)
Gọi d là ƯCLN(2n + 1; 6n + 5), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1;6n+5\right)=1\)
Vậy .............................................................
chứng minh rằng các cặp số sau nguyên tố cùng nhau với mọi STN n:
2n+1 và 2n+3
2n+3 và 4n+8
7n+8 và 6n+7
tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự
Đặt d= ƯCLN (2n+1, 2n+3)
\(\Rightarrow2n+1⋮d\) và\(3n+2⋮d\)
=>\(3\left(2n+1\right)⋮d\) và\(2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+3⋮d\) và\(6n+4⋮d\)
=>6n+4 - (6n+3) \(⋮d\)
=>\(1⋮d\)
=>d=1
Vậy cặp số trên nguyên tố cùng nhau với mọi STN n
Bài 5*. Cho n ∈ N. Tìm ƯCLN của :
a) 14 n + 3 và 7n + 2;
b) 6n + 1 và 30 n + 3;
c) 24 n + 7 và 18 n + 5.
a: UCLN(14n+3;7n+2)=1
b: UCLN(6n+1;30n+3)=2
Bài 5*. Cho n ∈ N. Tìm ƯCLN của :
a) 14 n + 3 và 7n + 2;
b) 6n + 1 và 30 n + 3;
c) 24 n + 7 và 18 n + 5.
a: \(\left\{{}\begin{matrix}14n+3⋮d\\7n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow-1⋮d\)
hay d=1