Giải phương trình :
\(13\sqrt{x-1}+9\sqrt{\sqrt{x+1}=16x}\)
Giải phương trình :
a) \(\sqrt{9x+27}-\dfrac{1}{4}\sqrt{16x+48}+\sqrt{x+3}=6\)
b) \(2+\sqrt{2x-1}=x\)
b. 2 + \(\sqrt{2x-1}=x\) ĐKXĐ: \(x\ge0,5\)
<=> \(\sqrt{2x-1}\) = x - 2
<=> 2x - 1 = (x - 2)2
<=> 2x - 1 = x2 - 4x + 4
<=> -x2 + 2x + 4x - 4 - 1 = 0
<=> -x2 + 6x - 5 = 0
<=> -x2 + 5x + x - 5 = 0
<=> -(-x2 + 5x + x - 5) = 0
<=> x2 - 5x - x + 5 = 0
<=> x(x - 5) - (x - 5) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
Giải phương trình !
Giải phương trình :
\(\sqrt{x+9}=\sqrt{x}+\frac{2\sqrt{2}}{\sqrt{x+1}}\)
dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)
\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)
<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)
giải phương trình sau
\(\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
Giải phương trình : \(\dfrac{2x\sqrt{x}}{\sqrt{x}+\sqrt{1-x}}\)+\(\sqrt{x\left(1-x\right)}\)=1
ĐKXĐ : \(0\le x\le1\)
Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\left(a;b\ge0\right)\)
Khi đó ta được a2 + b2 = 1 (1)
Lại có phương trình ban đầu trở thành
\(\dfrac{2a^3}{a+b}+ab=1\) (2)
Từ (1) ; (2) ta được \(\dfrac{2a^3}{a+b}+ab=a^2+b^2\)
\(\Leftrightarrow2a^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow a^3=b^3\Leftrightarrow a=b\)
Khi đó \(\sqrt{x}=\sqrt{1-x}\Leftrightarrow x=1-x\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
Vậy tập nghiệm \(S=\left\{\dfrac{1}{2}\right\}\)
Giải phương trình sau:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
=>|x-1|+|x-3|=1
TH1: x<1
Pt sẽ la 1-x+3-x=1
=>4-2x=1
=>x=3/2(loại)
TH2: 1<=x<3
Pt sẽ là x-1+3-x=1
=>2=1(loại)
TH3: x>=3
Pt sẽ là x-1+x-3=1
=>2x-4=1
=>2x=5
=>x=5/2(loại)
Giải phương trình \(9''\sqrt{4x+1}-\sqrt{3x-2}''=x+3\)
Giải phương trình :
\(\frac{2x\sqrt{x}}{\sqrt{x}+\sqrt{1-x}}+\sqrt{x\left(1-x\right)}=1\)
Giải phương trình :
\(16x^4+5=6\sqrt[3]{4x^3+x}\)