Tìm nghiệm 5x^2 +2xy +y^2 -16x +16=0
Tìm các số nguyên x,y thoả mãn 5x^2 +2xy+y^2-16x+16=0
\(5x^2+2xy+y^2-16x+16=0\)
=>\(x^2+2xy+y^2+4x^2-16x+16=0\)
=>\(\left(x+y\right)^2+\left(2x-4\right)^2=0\)
=>\(\left\{{}\begin{matrix}x+y=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
bài 11 phân tích đa thức thành nhân tử
a,\(x^2-xy+x\) b,\(x^2-2xy-4+y^2\) c,\(x^3-x^2-16x+16\)
bài 12 tìm x biết :
a,\(2x\left(x-5\right)-x\left(3+2x\right)=26\) b,\(2\left(x+5\right)-x^2-5x=0\)
bài 11
a) \(x^2-xy+x\\ =x\left(x-y+1\right)\)
b)
\(x^2-2xy-4+y^2\\ =\left(x^2-2xy+y^2\right)-4\\ =\left(x-y\right)^2-4\\ =\left(x-y-2\right)\left(x-y+2\right)\)
c)
\(x^3-x^2-16x+16\\ =x^2\left(x-1\right)-16\left(x-1\right)\\ =\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
bài 12
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x=26\\ x=-2\)
b)
\(2\left(x+5\right)-x^2-5x=0\\ 2\left(x+5\right)-x\left(x+5\right)=0\\ \left(x+5\right)\left(2-x\right)=0\\ \left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
tìm nghiệm nguyên x,y của phương trình : 3x^2-2xy+y-5x+2=0
PT \(\Leftrightarrow\left(3x^2-5x\right)-2xy+\left(y+2\right)=0\)
Xét \(\Delta'=y^2-\left(y+2\right)\ge0\Leftrightarrow y^2-y-2\ge0\)
\(\Leftrightarrow-y^2+y+2\le0\Leftrightarrow\left(y-2\right)\left(y+1\right)\)
\(\Leftrightarrow-1\le y\le2\)
Thế vô làm tiếp :v
tìm nghiệm nguyên x,y của phương trình : 3x^2-2xy+y-5x+2=0
Tìm nghiệm nguyên của pt: 5x2+2xy+y2-4x-40=0
5x2+2xy+y2-4x-40=0
<=>(x+y)2=4(10+x-x2)
<=>x+y=2\(\sqrt{10+x-x^2}\)
Tìm nghiệm nguyên của các pt sau
a,\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)\)\(=16\)
\(b,2x^2+4x=19-3y^2\)
giúp mk vs
( mik k ghi đề nhé bn)
a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16
=> 8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16
=> 16xy = 16
=> xy = 1
Vì x, y nguyên => x = 1, y = 1 hoặc x = -1, y = -1
mik xin lỗi nha, mik chỉ bt làm câu a
Cho 3x^2+y^2+2xy-16x-4y+22=0 . Tính D= 1/𝑥𝑦
Cho 4x^2+2y^2+z^2+14=2(xz+ỹ+5x+4y) . Tính E=x+y+z
Tìm x biết:
5x^2+2y^2-6xy+16x-8y+16=0
\(5x^2+2y^2-6xy+16x-8y+16=0\)
\(\Rightarrow10x^2+4y^2-12xy+32x-16y+32=0\)
\(\Rightarrow\left(9x^2-12xy+4y^2\right)+\left(24x-16y\right)+16+\left(x^2+8x+16\right)=0\)
\(\Rightarrow\left(3x-2y\right)^2+2.\left(3x-2y\right).4+4^2+\left(x+4\right)^2=0\)
\(\Rightarrow\left(3x-2y+4\right)^2+\left(x+4\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}3x-2y+4=0\\x+4=0\end{cases}\Rightarrow}\hept{\begin{cases}-12-2y+4=0\\x=-4\end{cases}\Rightarrow\hept{\begin{cases}y=-4\\x=-4\end{cases}}}\)
Vậy \(x=y=-4\)
Tìm nghiệm nguyên của phương trình:
4x2-2xy+5x+y+1=0.
hình như sai đề bạn. chỉ có x hoặc y thôi chứ