tìm gtnn và gtln của biểu thức \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
tìm GTLN,GTNN của biểu thức
\(B=\frac{3x+\sqrt{x}+10}{\sqrt{x}+1}\)
Đặt \(t=\sqrt{x},t\ge0\)
\(B=\frac{3t^2+t+10}{t+1}=\frac{3\left(t^2-2t+1\right)+7\left(t+1\right)}{t+1}=\frac{3\left(t-1\right)^2}{t+1}+7\ge7\)Dấu "=" xảy ra khi t = 1 <=> x = 1
B đạt giá trị nhỏ nhất bằng 7 tại x = 1
Không tồn tại giá trị lớn nhất.tìm GTLN,GTNN của biểu thức
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}\)
tìm GTLN,GTNN của biểu thức
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
Không tồn tại giá trị nhỏ nhất.a) Tìm GTLN của biểu thức : \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức : \(\sqrt{x^2-4x+3}\).
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1
Bài 1: Tìm GTNN và GTLN của biểu thức B=\(\frac{\sqrt{x}}{x+1}\)
Bài 2: Tìm GTNN,GTLN của M=\(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\)
ĐKXĐ: \(x\ge0\)
a/ \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x+1>0\end{matrix}\right.\) \(\Rightarrow B=\frac{\sqrt{x}}{x+1}\ge0\)
\(B_{min}=0\) khi \(x=0\)
\(B-\frac{1}{2}=\frac{\sqrt{x}}{x+1}-\frac{1}{2}=-\frac{x-2\sqrt{x}+1}{x+1}=-\frac{\left(\sqrt{x}-1\right)^2}{x+1}\le0\)
\(\Rightarrow B\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\) khi \(x=1\)
b/ Tương tự câu a \(M_{min}=0\)
\(M=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x+2\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}\le1\)
\(M_{max}=1\) khi \(x=1\)
Hỗ trợ em bài này ạ. Tìm GTLN và GTNN của biểu thức P=\(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\)
Lại có: \(4\sqrt{x}\ge0\) với mọi x
\(3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\) với mọi x
\(\Rightarrow\) \(\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\) với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\) x = 0
Vậy ...
Chúc bn học tốt! (Mk ms nghĩ ra được GTNN thôi thông cảm!)
Còn tìm GTLN:
Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-1\right)^2+\sqrt{x}\right]}\le\dfrac{4\sqrt{x}}{3\sqrt{x}}=\dfrac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\sqrt{x}-1=0\) \(\Leftrightarrow\) x = 1
Vậy ...
Chúc bn học tốt!
1 Tìm GTNN của biểu thức
C=\(\frac{x+9}{10\sqrt{x}}\)
2 Tìm GTLN của biểu thức E= \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
3 Tìm x để \(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
4 Rút họn P
P=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
3/ Điều kiện xác định bạn tự làm nhé
\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
\(\Leftrightarrow8x+67\sqrt{x}+1=0\)
Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm
Tìm GTLN và GTNN của biểu thức B = \(\frac{1-\sqrt{x}}{x-\sqrt{x}+1}\)
+ Ta có : \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\ge0\)
\(B=\frac{1-\sqrt{x}}{x-\sqrt{x}+1}\Rightarrow Bx-B\sqrt{x}+B=1-\sqrt{x}\)
\(\Rightarrow Bx+\left(1-B\right)\sqrt{x}+B-1=0\) (1)
+ TH1 : \(B=0\Leftrightarrow1-\sqrt{x}=0\Leftrightarrow x=1\)
+ TH2 : \(B\ne0\) thì phương trình (1) là phương trình bậc 2 với ẩn x có a = B; b = 1 - B; c = B - 1
\(\Delta=b^2-4ac=\left(1-B\right)^2-4B\left(B-1\right)=-3B^2+2B+1\)
+ Pt (1) có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow-3B^2+2B+1\ge0\Leftrightarrow\left(3B+1\right)\left(1-B\right)\ge0\)
\(\Leftrightarrow\frac{-1}{3}\le B\le1\)
+ \(B=-\frac{1}{3}\Leftrightarrow...\) ( giải tìm x )
+ \(B=1\Leftrightarrow...\)
Vậy \(MinB=-\frac{1}{3}\Leftrightarrow x=...\)
\(MaxB=1\Leftrightarrow x=...\)