Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐẶNG QUỐC SƠN
Xem chi tiết
trần thị thu
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 10 2016 lúc 11:26

Đặt \(t=\sqrt{x},t\ge0\)

\(B=\frac{3t^2+t+10}{t+1}=\frac{3\left(t^2-2t+1\right)+7\left(t+1\right)}{t+1}=\frac{3\left(t-1\right)^2}{t+1}+7\ge7\)

Dấu "=" xảy ra khi t = 1 <=> x = 1

B đạt giá trị nhỏ nhất bằng 7 tại x = 1

Không tồn tại giá trị lớn nhất.
trần hiếu
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 10 2016 lúc 11:29
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)

Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)

Max A = 3 <=> x = 0

Không tồn tại giá trị nhỏ nhất.
Hồ Quốc Khánh
Xem chi tiết
Nguyễn Quốc Khánh
30 tháng 11 2015 lúc 20:45

Ta có 

\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)

Áp dụng bất đẳng thức cô si cho 2 số không âm ta có

\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)

=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)

dấu bằng xảy ra <=>x=1

 

 

Nguyễn Quốc Khánh
30 tháng 11 2015 lúc 20:45

tick rui mình làm câu b cho

Nguyễn Thị Thanh Hằng
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 23:19

ĐKXĐ: \(x\ge0\)

a/ \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x+1>0\end{matrix}\right.\) \(\Rightarrow B=\frac{\sqrt{x}}{x+1}\ge0\)

\(B_{min}=0\) khi \(x=0\)

\(B-\frac{1}{2}=\frac{\sqrt{x}}{x+1}-\frac{1}{2}=-\frac{x-2\sqrt{x}+1}{x+1}=-\frac{\left(\sqrt{x}-1\right)^2}{x+1}\le0\)

\(\Rightarrow B\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\) khi \(x=1\)

b/ Tương tự câu a \(M_{min}=0\)

\(M=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x+2\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}\le1\)

\(M_{max}=1\) khi \(x=1\)

Khách vãng lai đã xóa
Nguyễn Trang
Xem chi tiết
Trương Huy Hoàng
16 tháng 2 2021 lúc 16:18

Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\) 

Lại có: \(4\sqrt{x}\ge0\) với mọi x

\(3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\) với mọi x

\(\Rightarrow\) \(\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\) với mọi x

Dấu "=" xảy ra \(\Leftrightarrow\) x = 0

Vậy ...

Chúc bn học tốt! (Mk ms nghĩ ra được GTNN thôi thông cảm!)

Trương Huy Hoàng
16 tháng 2 2021 lúc 16:31

Còn tìm GTLN:

Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-1\right)^2+\sqrt{x}\right]}\le\dfrac{4\sqrt{x}}{3\sqrt{x}}=\dfrac{4}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\) \(\sqrt{x}-1=0\) \(\Leftrightarrow\) x = 1

Vậy ...

Chúc bn học tốt!

Trần Hoàng Thiên Bảo
Xem chi tiết
alibaba nguyễn
19 tháng 11 2016 lúc 10:57

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

alibaba nguyễn
19 tháng 11 2016 lúc 11:02

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

alibaba nguyễn
19 tháng 11 2016 lúc 11:08

3/ Điều kiện xác định bạn tự làm nhé

\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)

\(\Leftrightarrow8x+67\sqrt{x}+1=0\)

Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm

Nguyễn Thị Thanh Mai
Xem chi tiết
bach nhac lam
7 tháng 1 2020 lúc 13:28

+ Ta có : \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\ge0\)

\(B=\frac{1-\sqrt{x}}{x-\sqrt{x}+1}\Rightarrow Bx-B\sqrt{x}+B=1-\sqrt{x}\)

\(\Rightarrow Bx+\left(1-B\right)\sqrt{x}+B-1=0\) (1)

+ TH1 : \(B=0\Leftrightarrow1-\sqrt{x}=0\Leftrightarrow x=1\)

+ TH2 : \(B\ne0\) thì phương trình (1) là phương trình bậc 2 với ẩn x có a = B; b = 1 - B; c = B - 1

\(\Delta=b^2-4ac=\left(1-B\right)^2-4B\left(B-1\right)=-3B^2+2B+1\)

+ Pt (1) có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow-3B^2+2B+1\ge0\Leftrightarrow\left(3B+1\right)\left(1-B\right)\ge0\)

\(\Leftrightarrow\frac{-1}{3}\le B\le1\)

+ \(B=-\frac{1}{3}\Leftrightarrow...\) ( giải tìm x )

+ \(B=1\Leftrightarrow...\)

Vậy \(MinB=-\frac{1}{3}\Leftrightarrow x=...\)

\(MaxB=1\Leftrightarrow x=...\)

Khách vãng lai đã xóa