Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Hoang Hai
Xem chi tiết
Hà Giang
Xem chi tiết
Nguyễn Ngọc Anh Minh
11 tháng 12 2020 lúc 8:09

10000...0+8=1000...08 (có 2014 chữ số 0)

\(1000...08⋮2\)

\(1000...08⋮9\)

2 và 9 là 2 số nguyên tố cùng nhau nên \(1000...08⋮18\)

Khách vãng lai đã xóa
Minh Hoang Hai
Xem chi tiết
Trần Dương
24 tháng 7 2017 lúc 20:11

Tham khảo bài này nha : https://diendan.hocmai.vn/threads/toan-8-chung-minh-so-chinh-phuong-giup-em-voi.268474/

Hồng Quang
23 tháng 2 2018 lúc 16:20

\(22.10^{2n+1}+4.10^{2n}+\left(10^{n-2}-1\right).10^{n+2}+1.10^{n+1}+9\)\(=220.10^{2n}+4.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9\)

\(=10^{2n}.225-10^n\left(100-10\right)+9\)

\(=\left(10^n.15\right)^2-90.10^n+9\)

\(=\left(10^n.15-3\right)^2\)

Vậy A là Số Chính Phương (đpcm)

Công Chúa Băng Giá
Xem chi tiết
Chu Công Đức
2 tháng 2 2020 lúc 9:19

\(x+y=1\)\(\Leftrightarrow\hept{\begin{cases}x-1=-y\\y-1=-x\end{cases}}\)

Ta có: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)^3+3y\left(y-1\right)}-\frac{y}{\left(x-1\right)^3+3x\left(x-1\right)}\)

\(=\frac{x}{-x^3-3xy}-\frac{y}{-y^3-3xy}=\frac{x}{-x\left(x^2+3y\right)}-\frac{y}{-y\left(y^2+3x\right)}\)

\(=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}=\frac{-\left(y^2+3x\right)+\left(x^2+3y\right)}{\left(x^2+3y\right)\left(y^2+3x\right)}=\frac{-y^2-3x+x^2+3y}{x^2y^2+3x^3+3y^3+9xy}\)

\(=\frac{\left(x^2-y^2\right)-3\left(x-y\right)}{x^2y^2+3\left(x^3+y^3\right)+9xy}=\frac{\left(x-y\right)\left(x+y\right)-3\left(x-y\right)}{x^2y^2+3\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+9xy}\)

\(=\frac{\left(x-y\right)-3\left(x-y\right)}{x^2y^2+3\left(1-3xy\right)+9xy}=\frac{-2\left(x-y\right)}{x^2y^2+3-9xy+9xy}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)( đpcm )

Khách vãng lai đã xóa
Rosie
Xem chi tiết
👁💧👄💧👁
23 tháng 11 2019 lúc 18:28

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

Khách vãng lai đã xóa
Pham hong duc
Xem chi tiết
Tuan
10 tháng 9 2018 lúc 15:29

k mk đi

ai k mk 

mk k lại

thanks

JakiNatsumi
2 tháng 8 2020 lúc 14:22

có làm thì mới có ăn nhé

JakiNatsumi
2 tháng 8 2020 lúc 14:25

22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)

Anime Chibi
Xem chi tiết
Kieu Diem
7 tháng 11 2019 lúc 21:43
https://i.imgur.com/z4bn8DU.jpg
Khách vãng lai đã xóa
Vũ Minh Tuấn
7 tháng 11 2019 lúc 21:47

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)

Nếu \(a+b+c+d\ne0.\)

\(\Rightarrow c+d=d+a\)

\(\Rightarrow c=a\left(đpcm1\right).\)

Nếu \(a+b+c+d=0\) thì hợp với đề.

\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:55

Phương trình tổng quát của đường thẳng \(d,d'\) lần lượt là: \(ax - y + b = 0,{\rm{ }}a'x - y + b' = 0\).

Do đó \(\overrightarrow {{n_d}}  = \left( {a; - 1} \right),{\rm{ }}\overrightarrow {{n_{d'}}}  = \left( {a' - 1} \right)\).

Ta có \(d \bot d' \Leftrightarrow \overrightarrow {{n_d}}  \bot \overrightarrow {{n_{d'}}}  \Leftrightarrow \overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}}  = 0 \Leftrightarrow a.a' + \left( { - 1} \right)\left( { - 1} \right) = 0 \Leftrightarrow a.a' =  - 1\).

Trần Thanh Nga
Xem chi tiết