CM nếu có a.c=b^2 thì a.(b^2+c^2) =c.(a^2+b^2)
Bài 1 nếu a+b/c-d =c+d/c-d thì a/b = c/d
Bài 2 nếu b^2=a.c thì a/c=(a+2007b)^2/(b+2007c)^2
cho \(\dfrac{a}{b}\) =\(\dfrac{c}{d}\) cm rằng
a) \(\dfrac{a}{a-b}\) =\(\dfrac{c}{c-d}\) b)\(\dfrac{a}{b}\) =\(\dfrac{a+c}{b+d}\) c) \(\dfrac{a}{3a+d}\) =\(\dfrac{c}{3c+d}\) d)\(\dfrac{a.c}{b.d}\) =\(\dfrac{a^2+c^2}{b^2+c^2}\) e)\(\dfrac{a.b}{c.d}\) =\(\dfrac{a^2-b^2}{c^2-d^2}\) f)\(\dfrac{a.b}{c.d}\) =\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mn giúp mk vs ạ! thanks
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
CM các đẳng thức sau
a) (a-b)2=a2-2ab+b2
b)(a+b+c) (a2+b2+c2) - (a.b-a.c-b.c) = a3+b2+c2-3abc
a/ (a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2
Cho biểu thức P=(a+b+c).(a.b+b.c+a.c)-2.a.b(vs a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
Cm nếu a/b=c/d thì (a+b/c+d)^2=a^2+b^2/c^2+d^2
Cho (x2- y.z)/ a = (y2- x.z)/b = (z2- x.y)/c cm (a2- b.c)/x = (b2- a.c)/y = (c2- a.b)
cho : b^2 = a.c . CMR a^2+b^2/a-c = c+d / b^2 + c^2= a/c
cho a,b,c là các số khác 0 thỏa mãn b2=a.c và c2 =b.d . CM :\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3+2ab+2ac+2bc}{b^3+c^3+d^3+2bc+2bd+2cd}\)
1. CM:
a) Nếu \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) thì \(a^2=bc\)
b) Nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{\left(a+b\right)^2}{a^2-b^2}=\frac{\left(c+d\right)^2}{c^2-d^2}\)
c) Nếu \(\frac{a-c}{b-c}=\frac{b+c}{a+c}\)thì a=b