Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
🙂T😃r😄a😆n😂g🤣
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2021 lúc 18:01

\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)

\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)

bfc,,
Xem chi tiết
Edogawa Conan
2 tháng 8 2021 lúc 15:50

g. G(x)=2x²+2y2+z²+2xy-2xz-2yz-2x-4y

           = [x2+2x(y-z)+(y2-2yz+z2)]+(x2-2x+1)+(y2-4y+4)-5

          = (x+y-z)2+(x-1)2+(y-2)2-5

Vì (x+y-z)2≥0∀x,y,z

     (x-1)2≥0∀x

      (y-2)2≥0∀y

⇒ G  = (x+y-z)2+(x-1)2+(y-2)2-5 ≥ -5

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=3\\x=1\\y=2\end{matrix}\right.\)

h,H(x)=x² + y²-xy-x+y+1

⇔ 2H=2x2+2y2-2xy-2x-2y+2

         = (x2-2xy+y2)+(x2-2x+1)+(y2-2y+1)

         = (x-y)2+(x-1)2+(y-1)2

Vì (x-y)2≥0 ∀x,y

    (x-1)2≥0 ∀x

     (y-1)2 ≥0 ∀y

⇒ 2H≥0 ⇒ H≥0

Dấu "=" xảy ra ⇔ x=y=1

KHANH QUYNH MAI PHAM
Xem chi tiết
ST
12 tháng 8 2018 lúc 21:22

<=>(x2+y2+z2+2xy+2yz+2xz)+(x2+2x+1)+(y2+4y+4)=0

<=>(x+y+z)2+(x+1)2+(y+2)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2\ge0}\)

=>\(\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}}\)

Băng Thiên
Xem chi tiết
Phương An
19 tháng 7 2017 lúc 14:36

2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 2x + 4y + 5 = 0

<=> (x2 + y2 + z2 + 2xy + 2yz + 2xz) + (x2 + 2x + 1) + (y2 + 4y + 4) = 0

<=> (x + y + z)2 + (x + 1)2 + (y + 2)2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\\z=3\end{matrix}\right.\)

Ngô Nam Khánh
Xem chi tiết
nghiemdamquockhanh
16 tháng 6 2018 lúc 8:15

yiouoiyy

Đàm Thị Minh Hương
16 tháng 6 2018 lúc 8:37

\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)

Đàm Thị Minh Hương
16 tháng 6 2018 lúc 8:40

\(A=2x^2+4y^2+4xy+2x+4y+9=\left(x^2+4y^2+4xy+2x+4y+1\right)+x^2+8\)

   \(=\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(Min\left(A\right)=8\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)

Lê Phan Thảo Đan
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:14

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:20

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

hoangtuvi
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 9 2021 lúc 9:28

\(Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5=\left[\left(x^2+2xy+y^2\right)-2z\left(x+y\right)+z^2\right]+\left(y^2-2y+1\right)+\left(z^2+4z+4\right)=\left(x+y-z\right)^2+\left(y-1\right)^2+\left(z+2\right)^2\ge0\)

\(minQ=0\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-3\\y=1\\z=-2\end{matrix}\right.\)

Hải Đức
11 tháng 9 2021 lúc 9:52

`Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5`

`Q=(x^2+y^2-z^2+2xy-2yz-2xz)+(y^2-2y+1)+(z^2+4z+4)`

`Q=(x+y-z)^2+(y-1)^2+(z+2)^2`

Ta thấy :

`(x+y-z)^2>=0`

`(y-1)^2>=0`

`(z+2)^2>=0`

`=>(x+y-z)^2+(y-1)^2+(z+2)^2>=0`

Dấu = xảy ra 

`<=>` $\begin{cases}x+y-z=0\\y-1=0\\z+2=0\end{cases}$

`<=>` $\begin{cases}x=-3\\y=1\\z=-2\end{cases}$

thanh xuân
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 10 2021 lúc 23:21

\(G=2x^2+2y^2+z^2+2xy-2xz-2yz-2x-4y\)

\(=\left[x^2+2x\left(y-z\right)+\left(y-z\right)^2\right]+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-5\)

\(=\left(x+y-z\right)^2+\left(x-1\right)^2+\left(y-2\right)^2-5\ge-5\)

\(minG=-5\Leftrightarrow\) \(\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)