g. G(x)=2x²+2y2+z²+2xy-2xz-2yz-2x-4y
= [x2+2x(y-z)+(y2-2yz+z2)]+(x2-2x+1)+(y2-4y+4)-5
= (x+y-z)2+(x-1)2+(y-2)2-5
Vì (x+y-z)2≥0∀x,y,z
(x-1)2≥0∀x
(y-2)2≥0∀y
⇒ G = (x+y-z)2+(x-1)2+(y-2)2-5 ≥ -5
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=3\\x=1\\y=2\end{matrix}\right.\)
h,H(x)=x² + y²-xy-x+y+1
⇔ 2H=2x2+2y2-2xy-2x-2y+2
= (x2-2xy+y2)+(x2-2x+1)+(y2-2y+1)
= (x-y)2+(x-1)2+(y-1)2
Vì (x-y)2≥0 ∀x,y
(x-1)2≥0 ∀x
(y-1)2 ≥0 ∀y
⇒ 2H≥0 ⇒ H≥0
Dấu "=" xảy ra ⇔ x=y=1