Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2019 lúc 2:23

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

DB = HD + HB = 2 + 6 = 8 (cm)

AC = DB (tính chất hình chữ nhật)

OA = OB = OC = OD = 1/2 BD = 4 (cm)

OD = OH + HD

⇒ OH = OD – HD = 4 – 2 = 2 (cm)

Suy ra: OH = HD = 2 cm nên H là trung điểm của OD

Tam giác ADO có AH là đường cao đồng thời là đường trung tuyến nên tam giác ADO cân tại A

⇒AD = AO = 4 (cm)

Trong tam giác vuông ABD có ∠ (BAD) = 90 0

B D 2 = A B 2 + A D 2  (định lý Pi-ta-go) ⇒  A B 2 = B D 2 - A D 2

AB = B D 2 - A D 2 = 8 2 - 4 2 ≈ 7 (cm).

Anime
Xem chi tiết
Nguyễn Thu Thủy
26 tháng 7 2018 lúc 12:51

A B C D H O

BD = HD + HB

      = 2 + 6

      = 8 ( cm )

ABCD là hình chữ nhật 

=> OA = OB = OC = OD = \(\frac{BD}{2}=\frac{AC}{2}=\frac{8}{2}=4\) \(\left(cm\right)\)

=> OH = OD – HD 

           = 4 - 2 = 2 ( cm )

\(\Delta AOD\)cân => AO = AD = 4 ( cm )

AD định lý py ta go cho tam giác ABD 

BD2 = AB2 + AD2

=> AB2 = 82 - 42 = 64 - 16 = 48

=> \(AB\approx7\left(cm\right)\)

ST
26 tháng 7 2018 lúc 12:58

A B C D H O

Kẻ đường chéo AC cắt BD tại O

Ta có: BD = DH + HB = 2 + 6 = 8 (cm)

 \(AC=BD\Rightarrow OA=OB=OC=OD=\frac{BD}{2}=\frac{8}{2}=4\left(cm\right)\)

\(\Rightarrow OH=OD-HD=4-2=2\left(cm\right)\Rightarrow OH=HD\left(=2cm\right)\)

=> AH là đường trung tuyến của t/g OAD

Mà AH là đường cao của t/g OAD

=> t/g OAD cân tại A => OA = AD = 4 (cm)

Xét t/g ABD vuông tại A có: \(AB^2+AD^2=BD^2\) (định lí pytago)

\(\Rightarrow AB=\sqrt{BD^2-AD^2}=\sqrt{8^2-4^2}=\sqrt{48}\approx7\left(cm\right)\)

Nguyễn Tất Đạt
26 tháng 7 2018 lúc 13:23

A B C D H 2 6 ? ?

Do tứ giác ABCD là hình chữ nhật => ^BAD = 900 => ^DAH + ^HAB = 900

Mà ^HAB + ^ABH = 900 => ^DAH = ^ABH

Xét \(\Delta\)AHD và \(\Delta\)BHA: ^DAH = ^ABH; ^AHD = ^BHA (=900) => \(\Delta\)AHD ~ \(\Delta\)BHA (g.g)

=> \(\frac{AH}{BH}=\frac{DH}{AH}\Rightarrow AH^2=BH.DH=2.6=12\)

Áp dụng ĐL Pytago cho \(\Delta\)AHD vuông tại H: \(AD^2=AH^2+DH^2=12+4=16\Leftrightarrow AD=4\)

Tương tự với \(\Delta\)AHB: \(AB^2=AH^2+HB^2=12+36=48\Leftrightarrow AB=\sqrt{48}=4\sqrt{3}\)

Vậy \(AD=4;AB=4\sqrt{3}.\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
30 tháng 6 2017 lúc 11:35

Hình chữ nhật

Nguyễn Ngọc Anh Thư
Xem chi tiết
Lầy Văn Lội
Xem chi tiết
21 Culacdo
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2021 lúc 20:17

a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

hay BD=10(cm)

b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔDHA\(\sim\)ΔDAB(g-g)

Bùi Phạm Bảo Hân
Xem chi tiết
Hoàng Nhâm
Xem chi tiết
Toán 8
Xem chi tiết