Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Viết Cường
Xem chi tiết
₮ØⱤ₴₮
21 tháng 5 2019 lúc 8:51

a) \(E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(E=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(E=\frac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(E=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(E=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(E=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(E=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(E=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(E=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(E=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(E=\frac{\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)}\)

₮ØⱤ₴₮
21 tháng 5 2019 lúc 9:10

b)đkxđ: \(x\ne1\); x\(\ge0\)

E=\(\frac{1}{3}\)<=>\(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{3}\)

<=>3(-5\(\sqrt{x}\)+2)=\(\sqrt{x}+3\)

<=>-15\(\sqrt{x}+6\)\(-\sqrt{x}\)=3

<=>\(-16\sqrt{x}=-3\)

<=>\(\sqrt{x}=\frac{3}{16}\)

\(< =>\left\{{}\begin{matrix}x=\frac{9}{256}\left(tm\right)\\x=\frac{-9}{256}\left(ktm\right)\end{matrix}\right.\)

vậy S=\(\left\{\frac{9}{256}\right\}\)

dương vũ
Xem chi tiết
Trình
6 tháng 8 2017 lúc 16:35

\(E=\left(\frac{a-1}{2\sqrt{a}}\right)\left[\frac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]\)

\(E=\frac{a-1}{2\sqrt{a}}.\frac{\sqrt{a}\left[\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right]}{a-1}\)

\(E=\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{2}=\frac{2\sqrt{a}.-2}{2}=-2\sqrt{a}\)

\(E=-4\Leftrightarrow-2\sqrt{a}=-4\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\)(nhận)

Nguyễn Thảo Nguyên
Xem chi tiết
Bimbim
11 tháng 8 2020 lúc 15:42

Kết quả là 25

Khách vãng lai đã xóa
Lưu Quý Lân
Xem chi tiết
Nguyễn Văn Tuấn Anh
9 tháng 11 2019 lúc 20:58

\(A=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11}{\left(\sqrt{x}+3\right)(\sqrt{x}-1)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{37\sqrt{x}-5x-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

Khách vãng lai đã xóa
tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:30

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

b: Thay x=16 vào A, ta được:

\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)

ILoveMath
30 tháng 8 2021 lúc 14:42

c)\(A=\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}\)

\(\Rightarrow\sqrt{x}+3=9\\ \Rightarrow\sqrt{x}=6\\ \Rightarrow x=36\)

d) \(A=\dfrac{3}{\sqrt{x}+3}\)

Vì \(3>0;\sqrt{x}+3>0\Rightarrow\dfrac{3}{\sqrt{x}+3}>0\)

e) \(2A\in Z\Rightarrow\dfrac{6}{\sqrt{x}+3}\in Z \Rightarrow6⋮x+3\\\Rightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\Rightarrow x=\left\{0;9\right\}\)

nguyễn thảo hân
Xem chi tiết
Ngoc Anhh
5 tháng 10 2018 lúc 15:06

\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(A=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(A=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(A=a+\sqrt{a}-2\sqrt{a}-1+1\)

\(A=a-\sqrt{a}\)

Thuy Duong Nguyen
Xem chi tiết
Phạm Thị Thùy Linh
7 tháng 7 2019 lúc 21:37

\(dkxd\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}}\)

\(A=\left(\frac{\sqrt{x}}{x-4}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}.\)

\(=\left(\frac{\sqrt{x}}{x-4}-\frac{2\left(\sqrt{x}+2\right)}{x-4}+\frac{\sqrt{x}-2}{x-4}\right):\frac{1}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+2}{1}\)

\(=\frac{-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-\frac{6}{\sqrt{x}-2}\)

thghf
7 tháng 7 2019 lúc 22:51

\(A=\)\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)\(:\frac{1}{\sqrt{x}+2}\)

a,ĐKXĐ:\(\hept{\begin{cases}x\ge0\\2-\sqrt{x}\\x-4\ne0\end{cases}\ne0}\)\(\Rightarrow\)\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\)\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)\(:\frac{1}{\sqrt{x}+2}\)

\(A=\)\(\left(\frac{\sqrt{x}}{x-4}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right)\)\(.\left(\sqrt{x}+2\right)\)

\(A=\)\(\left(\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)

\(A=\)\(\left(\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)

\(A=\)\(\left(\frac{-6}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)

\(A=\)\(\frac{-6}{\sqrt{x}-2}\)

b,\(x=9-4\sqrt{5}\)\(\Rightarrow\)\(A=\)\(\frac{-6}{\sqrt{9-4\sqrt{5}}-2}\)\(=\frac{-6}{\sqrt{5-2.2\sqrt{5}+4}-2}\)

\(A=\)\(\frac{-6}{\sqrt{\left(\sqrt{5}-2\right)^2}-2}\)\(=\frac{-6}{\sqrt{5}-2-2}\)\(=\frac{-6}{\sqrt{5}-4}\)

c,\(A>-1\)\(\Rightarrow\)\(\frac{-6}{\sqrt{x}-2}\)\(>-1\)\(\Rightarrow\)\(\frac{-6}{\sqrt{x}-2}+1>0\)

\(\Leftrightarrow\)\(\frac{-6+\sqrt{x}-2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\)\(\frac{\sqrt{x}-8}{\sqrt{x}-2}>0\)

Phạm Thị Thùy Linh
7 tháng 7 2019 lúc 23:29

\(d,\frac{-6}{\sqrt{x}-2}\)nhỏ nhất \(\Leftrightarrow\frac{6}{\sqrt{x}-2}\)lớn nhất

\(\Rightarrow\sqrt{x}-2\)nhỏ nhất \(\Rightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(\Rightarrow A_{min}=-2\Leftrightarrow x=0\)

\(e,\)\(A\in Z\Leftrightarrow\frac{6}{\sqrt{x}-2}\in Z\)\(\Leftrightarrow\sqrt{x}-2\inƯ_6\)

Mà \(Ư_6=\left\{\pm1;\pm2;\pm3;\pm6\right\}\Rightarrow...\)

Linh Nguyen
Xem chi tiết
JakiNatsumi
Xem chi tiết