Tìm tập xác định của hàm số sau g, y=\(\frac{\frac{1}{x}+\sqrt[]{2-x}}{\sqrt[]{x+1}+1}\)
Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{1}{{{x^2} - x}}\)
b) \(y = \sqrt {{x^2} - 4x + 3} \)
c) \(y = \frac{1}{{\sqrt {x - 1} }}\)
a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)
b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)
Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)
c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)
Tập xác định \(D = \left( {1; + \infty } \right)\)
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {2x - 1} + \sqrt {5 - x} \)
b) \(y = \frac{1}{{\sqrt {x - 1} }}.\)
a) Tập xác đinh của hàm số \(y = \sqrt {2x - 1} + \sqrt {5 - x} \) là:
\(\left\{ {\begin{array}{*{20}{c}}{2x - 1 \ge 0}\\{5 - x \ge 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x \ge \frac{1}{2}}\\{x \le 5}\end{array}} \right.} \right.\,\, \Leftrightarrow \,\,\frac{1}{2} \le x \le 5\)
Vậy tập xác định của hàm số là: \(D = \left[ {\frac{1}{2};5} \right].\)
b) Tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 1} }}\) là: \(x - 1 > 0\,\, \Leftrightarrow \,\,x > 1.\)
Vậy tập xác định của hàm số là: \(D = \left( {1; + \infty } \right).\)
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} .\)
a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).
Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)
b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\)
Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\)
Tìm tập xác định của hàm số sau:
a) y=\(\sqrt{2x-1}+\sqrt{\frac{1}{3x}}\)
b) y=\(\sqrt{x+3}+\frac{1}{x^2-4}\)
c)y=\(\sqrt{x-5}-\sqrt{x+3}\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}-x+3}\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}-x+3}\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}-x+3}\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}-x+3}\)
tìm tập xác định của hàm số là làm thế nào chỉ ik
là tìm điều kiện để hàm số có thể xác định được đó bn .
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}-x+3}\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}}-x+3\)