X mũ 2+ y mũ 2 -4.X +2
Chứng minh biểu thức luôn dương
A = 16 x mũ 4 - 8x mũ 3 y + 7x mũ 2 y mũ 2 - 9y mũ 4
B = -15 x mũ 4 + 3x mũ 3 y - x mũ 2 y mũ 2 - 6y mũ 4
C = 5x mũ 3 y + 3x mũ 2 y mũ 2 + 17 y mũ 4 + 1
Chứng minh rằng ít nhất 1 trong 3 đa thức này có giá trị dương với mọi x , y
Chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x:
4, D= x mũ 2 +x+1
6, F= 2x mũ 2 +4x +3
7, G= 3x mũ 2 -5x +3
8, H= 4x mũ 2 +4x +2
9, K = 4x mũ 2 + 3x +2
10, L = 2x mũ 2 +3x +4
\(4)D=x^2+x+1\)
\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.
Các câu khác lm tương tự nhé.
Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy
hok tốt~
\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )
\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)
\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )
\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)
\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )
\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)
\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )
\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)
\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )
\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)
\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )
Cho biểu thức t bằng x mũ 2 trừ 4 xy cộng 5 y bình trừ 2 y cộng 3 chứng minh rằng t luôn dương vs mọi giá trị của x y
Bài 1: Chứng minh giá trị của biểu thức không phụ thuộc vào giá trị của biến
(-x mũ 4 -x mũ 3)+(x mũ 4 +2x mũ 3 +5x mũ 2 +3x)+(-5x mũ 2 -3x - x mũ 3)
`@` `\text {Ans}`
`\downarrow`
`(-x^4 - x^3) + (x^4 + 2x^3 + 5x^2 + 3x) + (-5x^2 - 3x - x^3)`
`= -x^4 - x^3 + x^4 + 2x^3 + 5x^2 + 3x - 5x^2 - 3x - x^3`
`= (-x^4+x^4) + (-x^3 + 2x^3 - x^3) + (5x^2 - 5x^2) + (3x - 3x)`
`= 0 + 0 + 0 + 0`
`= 0`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
`@` `\text {Kaizuu lv uuu}`
Chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x:
4, D= x mũ 2 +x+1
6, F= 2x mũ 2 +4x +3
7, G= 3x mũ 2 -5x +3
8, H= 4x mũ 2 +4x +2
9, K = 4x mũ 2 + 3x +2
10, L = 2x mũ 2 +3x +4
1: \(D=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
6: \(F=2\left(x^2+2x+\dfrac{3}{2}\right)=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2+1>0\)
7: \(=3\left(x^2-\dfrac{5}{3}x+1\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)
\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>0\)
8: \(=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
cho đơn thức : A = [ - 2/3x mũ 2 y] . [ -3/5x mũ 2 y mũ 3]. a, thu gọn đơn thức A . b, tính giá trị của đơn thức A tại x = -1, y = 2 . c, cho B = A - x mũ 4 y mũ 4 - 3 . CMR B luôn âm với mọi giá trị của x , y
a, \(A=\left(-\dfrac{2}{3}x^2y\right)\left(-\dfrac{3}{5}x^2y^3\right)=\dfrac{2}{5}x^4y^4\)
b,Thay x = -1 ; y = 2 ta được \(\dfrac{2^5}{5}=\dfrac{32}{5}\)
c, \(B=\dfrac{2}{5}x^4y^4-x^4y^4-3=-\dfrac{3}{5}x^4y^3-3< 0\)
Vậy B luôn nhận gtr âm
Cho hai đa thức: P(x)=3x mũ 3-2x+2x mũ 2+7x+8-x mũ 4 Q(x)=2x mũ 2-3x mũ 3+3x mũ 2-5x+5x mũ 4 a.Thu gọn,sắp xếp theo luỹ thừa giảm dần của của biến và tìm bậc của mỗi đơn thức b.Tính R(x)=P(x)+Q(x) c.Chứng tỏ R(x) luôn có giá trị dương với mọi giá trị của biến
a) \(P\left(x\right)=3x^3-2x+2x^2+7x+8-x^4)\)
\(P\left(x\right)=3x^3(-2x+7x)+2x^2+8-x^4)\)
\(P\left(x\right)=3x^3+5x+2x^2+8-x^4)\)
\(P\left(x\right)=-x^4+3x^3+2x^2+5x+8\)
\(Q\left(x\right)=2x^2-3x^3+3x^2-5x^4\)
\(Q\left(x\right)=(2x^2+3x^2)-3x^3-5x^4\)
\(Q\left(x\right)=5x^2-3x^3-5x^4\)
\(Q\left(x\right)=-5x^4-3x^2+5x^2\)
b)
\(P\left(x\right)+Q\left(x\right)=(3x^3-2x+2x^2+7x+8-x^4)+\left(2x^2-3x^3+3x^2-5x^4\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^3-2x+2x^2+7x+8-x^4+2x^2-3x^3+3x^2-5x^4\)
\(P\left(x\right)+Q\left(x\right)=\left(3x^3-3x^3\right)+\left(-2x+7x\right)+\left(2x^2+2x^2+3x^2\right)+8+\left(-x^4-5x^4\right)\)\(P\left(x\right)+Q\left(x\right)=5x+7x^2+8-6x^4\)
Vậy: \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)
c. \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)
\(=5x+7x^2+4+4-6x^4\)
\(=\) \((12x-4)^2+4\ge4-6x^4\)
Câu c MIK KHÔNG CHẮC LÀ ĐÚNG
Chứng minh:
a/ (x-2)(x mũ 2 +2x + 4) = x mũ 3 - 8
b/ (x mũ 3 + x mũ 2 y + xy mũ 2+ y mũ 3)(x-y) = x mũ 4 - y mũ 4
chứng minh đẳng thức
[ x + y ] mũ 3 - [ x - y ] mũ 3 = 2y [ 3x mũ 2 + y mũ 2 ]
x^3 + 3x^2y + 3xy^2 + y^3 - ( x^3 - 3x^2y + 3xy^2 - y^3)
= x^3 + 3x^2y + 3xy^2 + y^3 - x^3 + 3x^2y - 3xy^2 + y^3
= 6x^2y + 2y^3
= 2y( 3x^2 + y^2)
=> ĐPCM
ai đẹp trai thế