tìm GTLN, GTNN các biểu thức sau;
\(^{x^2+1}\) \(x^2-2x+2\) \(2x^2+4x+15\) \(3x^2+5x-2\) \(-x^2+1\)
\(-3x^2+2x+1\) \(x-x^2+1\) \(x^2+x+1\) \(4x-x^2-4\) \(-2x^2-3x+4\)
\(2x^2+y^2-6x+2xy+10\)
Tìm GTLN, GTNN của các biểu thức sau và tìm điều kiện của x để biểu thức có GTLN, GTNN:
C=/x+1/+/x+2/+/x+3/+/x+4/+/x+5/
D=/x-1/+/x-2/+/x-3/+....+ /x-2017/
Giúp mk nha !
Bài 8: Tìm GTNN hoặc GTLN của các biểu thức sau: B = y²-y+1 E = x -x² +2
B=y^2-y+1
=y^2-2*y*1/2+1/4+3/4
=(y-1/2)^2+3/4>=3/4
Dấu = xảy ra khi y=1/2
E=-x^2+x+2
=-(x^2-x-2)
=-(x^2-x+1/4-9/4)
=-(x-1/2)^2+9/4<=9/4
Dấu = xảy ra khi x=1/2
Tìm GTNN hoặc GTLN của các biểu thức sau:
E= 3x^2 + y^2 +2xy -2x -4y +20
tìm GTLN, GTNN của các biểu thức sau:
A= | x - 2 | - 5
B = -2 - | x + 4 |
Tìm GTNN hoặc GTLN của các biểu thức sau:
E= 3x^2 + y^2 +2xy -2x -4y +20
Tìm GTLN hoặc GTNN của các biểu thức sau
\(-2x+4\sqrt{x}+1\)
\(-2x+4\sqrt{x}+1\)
\(=-2\left(x-2\sqrt{x}+1\right)+3\)
\(=-2\left(\sqrt{x}-1\right)^2+3\le3\left(\forall x\ge0\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Tìm GTLN hoặc GTNN của các biểu thức sau
\(x-4\sqrt{x}+5\)
ĐKXĐ :\(x\ge0\)
\(x-4\sqrt{x}+5\)
\(=x-4\sqrt{x}+4+1\)
\(=\left(\sqrt{x}-2\right)^2+1\ge1\forall x\ge0\)
Dấu"=" xả ra <=> \(\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
tìm x là số nguyên sao cho biểu thức sau đạt GTLN, GTNN(nhớ là tìm GTLN, rồi tìm GTNN sau)
a. A=20-(x+1)^2008
b.B=(x-1)^2+90
Vì (x+1)2008 \(\ge\) 0 với mọi x => - (x+1)2008 \(\le\) 0 => 20 - (x+1)2008 \(\le\) 20 + 0 = 20 với mọi x
=> A lớn nhất bằng 20 khi x+ 1= 0 <=> x = -1
b) Vì (x-1)2 \(\ge\) 0 với mọi x => (x-1)2 + 90 \(\ge\) 0 + 90 = 90 với mọi x
=> B nhỏ nhất = 90 khi x -1 = 0 <=> x = 1
đấy nha, tự trả lời đê, ai bảo nói mk kia
Tìm GTNN hoặc GTLN của các biểu thức sau
B=4x^2+8x
C=-2x^2+8x-15
B = 4x2 + 8x
= 4( x2 + 2x + 1 ) - 4
= 4( x + 1 )2 - 4
4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MinB = -4 <=> x = -1
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
1.Tìm GTNN của các biểu thức sau
A=|x-3|+10
B=-7+(x-1)^2
2.Tìm GTLN của các biểu thức sau
C=-3-|x+2|
D=15-(x-2)^2
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2