1 Cho \(x,y,z\in(0,1]\) CM \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Cho \(x;y;z\in\left(0;1\right)\)CM
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
1 cho 3 số a,b,c tm \(0\le a,b,c\le2\) và\(a+b+c=3\) CM \(a^3+b^3+c^3\le9\)
2 CHO \(x,y,z\in(0,1]\) CM \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Câu 2, Do 0<x,y,z<=1 nên ta có:
\(\hept{\begin{cases}\left(x-1\right)\left(y-1\right)\ge0\\\left(y-1\right)\left(z-1\right)\ge0\\\left(z-1\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}xy+1\ge x+y\\yz+1\ge y+z\\xz+1\ge x+z\end{cases}}}\)
Thay vào VT ta có:
\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)(1)
Do x,y,z <= 1 nên x+y+z <=3 nên \(\frac{3}{x+y+z}\ge\frac{3}{3}=1\)(2)
Từ (1),(2) -> dpcm
1/ Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\)
Khi đó \(3=a+b+c\le3a\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)
Ta có:
\(LHS=a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)
\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)
\(=9a^2-27a+27=9\left(a-1\right)\left(a-2\right)+9\le9\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị.
P/s: Is that true?
cho \(0\le x;y;z\le1.\)CMR:\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Vì \(0\le x,y,z\le1\)
\(\Rightarrow xy\le y\)
\(x^2\le1\)
\(\Rightarrow x^2+xy+xz\le xz+y+1\)
\(\Leftrightarrow x\left(x+y+z\right)\le1+y+xz\)
\(\Leftrightarrow\)\(\frac{x}{1+y+xz}\le\frac{1}{x+y+z}\)
CMTT : các vế khác cug vậy
cộng các vế vào là đc
\(0\le x;y;z\le1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow xy-x-y+1\ge0\)
\(\Rightarrow xy+1\ge x+y\)
Tương tự ta chứng minh được \(xz+1\ge x+z\)và \(yz+1\ge y+z\)
\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{1}{x+y+z}\)(\(x\le1\))
\(\Rightarrow\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\le\frac{1}{x+y+z}\)(\(y\le1\))
\(\Rightarrow\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\le\frac{1}{x+y+z}\)\(z\le1\))
\(\Rightarrow\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)(đpcm)
Đề chuyên Sư Phạm năm 2020 nè !!!!!!!
Cho \(0\le x,y,z\le1\). CMR:
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Do \(0\le x,y,z\le1\)\(\Rightarrow x\ge x^2;y\ge y^2;z\ge z^2\)
\(\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\Rightarrow xz-x-z+1\ge0\Rightarrow xz+y+1\ge x+y+z\ge x^2+y^2+z^2\)
\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{x}{x^2+y^2+z^2}\)
Tương tự rồi cộng từng vế, ta có:
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{3}{x+y+z}\)
=> ĐPCM
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xy+yz}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
cm biết x y z >0
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
cho x+y+z=1 CMR : \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{xz}{y+xz}}\le\frac{3}{2}\)
Cho x+y+z =1 CMR \(\sqrt{\frac{xy}{z-xy}}+\sqrt{\frac{yz}{x-yz}}+\sqrt{\frac{xz}{y-xz}}\le\frac{3}{2}\)
Bạn ghi sai đề rồi nhé! Nếu ta lần lượt thay số vào các biến \(x,y,z\) ở vế trái của bất đẳng thức trên (chẳng hạng như \(\frac{1}{3}\)) kết hợp với chú ý rằng \(x=y=z\) (sẽ được chứng minh ở các bước sau này), khi đó kết quả sẽ cho ra khác, tức là \(\frac{3}{\sqrt{2}}\) (vô lý!). Đó là lý do mình phải 'viết lại' đề cộng với một chút chỉnh sửa hợp lý về phương diện toán học. Hmmm, vất vả vật lộn với bài này quá nya. \(3\) \(s\) đi!
Đề: Cho ba số thực dương \(x,y,z\) thỏa mãn \(x+y+z=1\)
Chứng minh rằng: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{xz}{y+yz}}\le\frac{3}{2}\) \(\left(\text{*}\right)\)
Lời giải:
Từ giả thiết đã cho ở trên, ta dễ dàng chứng minh được \(1>x,y,z>0\) với mọi \(x,y,z\in R^+\)
\(\Rightarrow\) \(1-x>0;\) \(1-y>0;\) \(1-z>0\)
Khi đó, áp dụng bất đẳng thức \(AM-GM\) cho hai số không âm với chú ý rằng \(x+y+z=1\) (theo giả thiết), ta có:
\(\sqrt{\frac{xy}{z+xy}}=\sqrt{\frac{xy}{1-x-y+xy}}=\sqrt{\frac{xy}{\left(1-x\right)\left(1-y\right)}}\le\frac{1}{2}\left(\frac{x}{1-y}+\frac{y}{1-x}\right)\) \(\left(1\right)\)
Hoàn toàn tương tự với vòng hoán vị \(y\) \(\rightarrow\) \(z\) \(\rightarrow\) \(x\), ta chứng minh được:
\(\sqrt{\frac{yz}{x+yz}}\le\frac{1}{2}\left(\frac{y}{1-z}+\frac{z}{1-y}\right)\) \(\left(2\right)\) và \(\sqrt{\frac{xz}{y+xz}}\le\frac{1}{2}\left(\frac{z}{1-x}+\frac{x}{1-z}\right)\) \(\left(3\right)\)
Cộng từng vế các bất đẳng thức \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right),\) ta được:
\(VT\left(\text{*}\right)\le\frac{1}{2}\left[\left(\frac{y}{1-x}+\frac{z}{1-x}\right)+\left(\frac{x}{1-y}+\frac{z}{1-y}\right)+\left(\frac{x}{1-z}+\frac{y}{1-z}\right)\right]=\frac{1}{2}\left(1+1+1\right)=\frac{3}{2}=VP\left(\text{*}\right)\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=\frac{1}{3}\)
Cho x,y,z là 3 số dương.Chứng minh rằng
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
\(\frac{1}{x^2+yz}\le\frac{1}{2\sqrt{x^2.yz}}=\frac{1}{2\sqrt{xy.xz}}\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{xz}\right)\)
Tương tự: \(\frac{1}{y^2+zx}\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}\right)\) ; \(\frac{1}{z^2+xy}\le\frac{1}{4}\left(\frac{1}{xz}+\frac{1}{yz}\right)\)
Cộng vế với vế ta sẽ có đpcm
Cho x, y, z >0 thoả mãn x+y+z=1. Cmr: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
\(VT=\sum\frac{x}{x\left(x+y+z\right)+yz}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(VT=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(VT=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y+z\right)\left(xy+yz+zx\right)-xyz}=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)-xyz}\)
\(VT\le\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+\frac{1}{9}3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}-xyz}\)
\(VT\le\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+xyz-xyz}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)