Tim GTNN cua bieu thuc sau:
Q= \(\frac{-2\sqrt{3x}}{3+x}\) ( voi x≥0, x≠-3)
cho bieu thuc:P=\(\frac{\sqrt{x}}{\sqrt{x}-3}\)+\(\frac{2\sqrt{x}}{\sqrt{x}-3}\)--\(\frac{3x+9}{x-9}\) voi x>= 0;x#9 .a; Rut gon bieu thuc P . b; Tinh gia tri cua bieu thuc voi \(x=4-2\sqrt{3}\)
1) Cho bieu thuc: \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(x\ge0,x\ne16\right)\)
a) Cho bieu thuc A= \(\frac{\sqrt{x}+4}{\sqrt{x}+2}\) ; voi cac cua bieu thuc A va B da cho, hay tim cac gia tri cua x nguyen de gia tri cua bieu thuc B(A;-1) la so nguyen
cho bieu thuc P= (\(\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-3}\) ): \(\frac{1}{x-1}\)
a) Tim dieu kien de P co nghia, rut gon bieu thuc P.
b) Tim cac so tu nhien x de \(\frac{1}{P}\)la so tu nhien
c) Tinh gia tri cua P voi x= 4-\(2\sqrt{3}\)
Giup mk vs mk dang can gap
Tim GTNN cua bieu thuc \(\frac{3x^2-18x+9}{x^2-4x+4}\)
Theo mình đề này chỉ có max thôi nha!
\(B=\frac{3x^2-18x+9}{x^2-4x+4}=-\frac{3\left(x+3\right)^2}{5\left(x-2\right)^2}+\frac{18}{5}\le\frac{18}{5}\)
Đẳng thức xảy ra khi \(x=-3\)
Cho bieu thuc: \(p=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a) Tim DKXD cua bieu thuc p
b) Rut gon bieu thuc p
tim gtln cua bieu thuc P=\(\frac{\sqrt{x-2017}}{x}\) voi x>=2017
Vì \(x\ge2017\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2017}\ge0\\x\ge2017\end{matrix}\right.\)\(\Rightarrow MaxP=0\)
dấu"=" xảy ra khi x=2017
\(\frac{2017-2015x}{\sqrt{1-x^2}}\)
tim GTNN cua bieu thuc tren
tim MIN cua bieu thuc sau
\(D=\frac{x^2-3x+3}{x^2-2x+1}\)
\(D=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-3\left(x-1\right)}{\left(x-1\right)^2}\)
Đặt: x-1=y=>x=y+1. Ta có:
\(D=\frac{\left(y+1\right)^2-3y}{y^2}=\frac{y^2-y+1}{y^2}=1-\frac{1}{y}+\frac{1}{y^2}\)
Đặt: \(\frac{1}{y}=t\Rightarrow D=1-t+t^2\ge\frac{3}{4}\\ D=\frac{3}{4}\Leftrightarrow\left(t-\frac{1}{2}\right)^2=0\Rightarrow t=\frac{1}{2}\)
\(t=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{1}{2}\Rightarrow y=2\Leftrightarrow x-1=2\Rightarrow x=3\)
Vậy minD=\(\frac{3}{4}\Leftrightarrow x=3\)
D=\(\frac{x.x-3x+3}{x.x-2x+1}\)
D=\(\frac{x.\left(x-3\right)+3}{x.\left(x-2\right)+1}\)
D=\(\frac{x-3+3}{x-2+2}\)(Chia cả tử và mẫu cho x lần)
D=\(\frac{x}{x}\)
D=1
tim GTNN cua bieu thuc
a) A=\(\sqrt{x}+1\)
b) B=\(\frac{1}{2}+\sqrt{x}\)
a, A >= 0
Dấu "=" xảy ra <=> x=0
Vậy GTNN của A = 1 <=> x=0
b, B >= 1/2
Dấu "=" xảy ra <=> x=0
Vậy GTNN của B = 1/2 <=> x=0
Tk mk nha
Câu a)
Ta có: \(A=\sqrt{x}+1\)
Ta có: \(\sqrt{x}\ge0\)
Suy ra \(\sqrt{x}+1\ge1\)
Vậy A đạt GTNN là 1 tại x = 0 (tự giải x ra nha)
câu b) Tương tự
Thánh làm biếng chào bn :3
a, Ta có \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)
Dấu ' = ' xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy GTNN của A là 1 tại x = 0
b, Tương tự cau a