Cho hình bình hành ABCD có O là giao điểm của AC và BD.Lấy điểm E trên cạnh CD sao cho ED=1/3DC.AE cắt BD tại K.Từ O kẻ đường thẳng song song với E cắt CD tại F
a)CM:DE=FE=FC
b)Tính DK biết BD=12cm
Cho hình bình hành ABCD, O là giao điểm của AC và BD lấy E thuộc CD sao cho ED = 1/2 CD. AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE cắt CD tại F. CM
2) Chứng minh DE = FE = FC.
Cho hình bình hành ABCD, O là giao điểm của AC và BD lấy E thuộc CD sao cho ED = 1/2 CD. AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE cắt CD tại F. CM
1) F là trung điểm EC
2) Chứng minh DE = FE = FC.
3) Chứng minh K là trung điểm của OD.
Cho hình bình hành ABCD, O là giao điểm của AC và BD lấy E thuộc CD sao cho ED = 1/3 CD. AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE cắt CD tại F. CM
1) F là trung điểm EC
2) Chứng minh DE = FE = FC.
3) Chứng minh K là trung điểm của OD.
Cho hình bình hành ABCD, O là giao điểm của AC và BD lấy E thuộc CD sao cho ED = 1/2 CD. AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE cắt CD tại F. CM
1) F là trung điểm EC
2) Chứng minh DE = FE = FC.
3) Chứng minh K là trung điểm của OD.
Cho hình bình hành ABCD, O là giao điểm của AC và BD lấy E thuộc CD sao cho ED = 1/2 CD. AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE cắt CD tại F. CM
2) Chứng minh DE = FE = FC.
Cho hình bình hành ABCD tâm O, lấy E thuộc Cd sao cho : ED = \(\frac{1}{3}\)DC, AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE, cắt CD tại F.Chứng minh:
a) F là trung điểm EC
b) DE = FE = FC
c) K là trung điểm của OD
Cho hình bình hành ABCD tâm O, lấy E thuộc CD sao cho: ED=1/3CD, AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE, cắt CD ở F.
a) Chứng minh DE=FE=FC.
b) Tính DK, biết BD=12cm
a: ED=1/3CD
nên EC=2/3CD
Xét ΔAEC có
O là trung điểm của AC
OF//AE
Do đó: F là trung điểm của CE
=>CF=FE=1/3CD=ED
b: Xét ΔDFO có KE//OF
nên DE/DF=DK/DO=1/2
=>DK=1/2DO=1/4DB=3cm
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
cho Hình thang ABCD có AB // CD O là giao điểm của AC và BD a, chứng mình OA/AC = OB/BD. b, Kẻ đường thẳng đi qua O song song với AD cắt CD tại E. Đường thẳng đi qua O song song với BC cắt CD tại F. Chứng minh DE = CF. c, Gọi I là giao điểm của AD và FO, J là giao điểm của BC và EO. Chứng mình IJ // AB. d, Gọi H là giao điểm của AD và BC K là trung điểm của EF. chứng mminhf O,H,K thẳng hàng
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB\(\sim\)ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)
b: Xét ΔCAD có OE//AD
nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)
Xét ΔBDC có OF//BC
nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)
=>DE=CF