a)Cho a,b,c thỏa mãn a+b+c=0.CMR:a3+b3+c3=3abc
b)Phân tích thành nhân tử:(x-y)3+(y-z)3+(z-x)3
phân tích đa thức thành nhân tử
a)a^3-b^3+c^3+3abc
b)a^3 -b^3-c^3-3abc
c)(x-y)^3+(y-z)^3+(z-x)^3
ta có :
\(a^3+c^3=\left(a+c\right)^3-3ac\left(a+c\right)\)
nên \(a^3+c^3-b^3+3abc=\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)\)
\(=\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2-3ac\right]=\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)\)
b. tương tự ta có :
\(a^3-b^3-c^3-3abc=a^3-\left(b+c\right)^3+3bc\left(b+c-a\right)\)
\(=\left(a-b-c\right)\left[a^2+a\left(b+c\right)+\left(b+c\right)^2-3bc\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)
c. ta có : \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=\left(x-z+z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+3\left(x-z\right)\left(z-y\right)\left(x-y\right)+\left(z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=3\left(x-z\right)\left(z-y\right)\left(x-y\right)\)
Phân tích đa thức thành nhân tử:
a) M = ( a + b + c ) 3 - a 3 - b 3 - c 3 ;
b) N = a 3 + b 3 + c 3 - 3abc.
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
phân tích đa thức:
x4 + 2021x2 + 2020x + 2021
a(b2 - c2) + b(c2 - a2) + c(a2 - b2)
a3(b - c) + b3(c - a) + c3(a - b)
(x + y + z)3 - (x + y - z)3 - (x - y + z)3 - (-x + y + z)3
b) Ta có: \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)
\(=\left(ab^2-cb^2\right)+\left(ca^2-c^2a\right)+\left(bc^2-ba^2\right)\)
\(=b^2\left(a-c\right)+ca\left(a-c\right)+b\left(c^2-a^2\right)\)
\(=\left(a-c\right)\left(b^2+ca\right)-b\left(a-c\right)\left(a+c\right)\)
\(=\left(a-c\right)\left(b^2+ca-ba-bc\right)\)
\(=\left(a-c\right)\left[b\left(b-a\right)+c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]\)
\(=\left(a-c\right)\left(b-a\right)\left(b-c\right)\)
trời ơi cái qq gì í đây
Bài 1:Phân tích đa thức sau thành nhân tử
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
b) x3-x+3x2y+3xy2+y3-y
Bài 2: Cho a+b+c=0 ,chứng minh rằng a3+b3+c3=3abc
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
Mình làm bài 2 luôn:
Ta có: a3+b3+c3=(a+b)3-3a2b-3ab2+c3
=(a+b)3+c3-3ab(a+b)
=(a+b+c)[(a+b)2-(a+b)c+c2 ]-3ab(a+b)
=-3ab(a+b) (vì a+b+c=0)
Từ a+b+c=0 =>-c=a+b
=> -3ab(a+b)=-3ab(-c)=3abc
đpcm
Phân tích đa thức thành nhân tử:
A= x.(y2 - z2) + y.(z2 - x2) + z.(x2 - y2).
B= a.(b3 - c3) + b.(c3 - a3) + c.(a3 - b3).
C= ab.(a + b) - bc.(b + c) + ac. (a - c).
\(A=x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left(y^2-z^2\right)+y\left(-y^2+z^2-x^2+y^2\right)+z\left(x^2-y^2\right)=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)=\left(y-z\right)\left(y+z\right)\left(x-y\right)-\left(x-y\right)\left(x+y\right)\left(y-z\right)=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(B=a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c+abc+b^2c\right)\)
\(C=ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)=ab\left(a+b\right)-bc\left(a+b-a+c\right)+ac\left(a-c\right)=ab\left(a+b\right)-bc\left(a+b\right)+bc\left(a-c\right)+ac\left(a-c\right)=b\left(a+b\right)\left(a-c\right)+c\left(a-c\right)\left(a+b\right)=\left(a+b\right)\left(c+c\right)\left(a-c\right)\)
b1: cmr nếu x+y+z=-3 thì (x+1)^3+(y+1)^3+(z+1)^3= 3(x+1)(y+1)(z+1)
b2: cho A+ (a^2+b^2-c^2)^2 -4a^2b^2
a) phân tích A thành nhân tử
b) cm nếu a,b,c là số đo độ dài các cạnh của 1 tam giác thì A<0
b3: cho đa thức M=(a+b)(b+c)(c+a)+abc
a/ phân tích M thành nhân tử
b/ cm nếu a,b,c thuộc z và a+b+c chia hết cho 6 thì (M-3abc) chia hết cho 6
b4: n thuộc z. cm n^3(n^2-7)^2 _ 36n chia hết cho 105
b5: xác định a,b để đa thức x^4- 3x^3+3x^2+ ax+b chia hết cho đa thức x^2-3x+4.
CÁC BẠN GIÚP MÌNH VỚI. CHIỀU PHẢI NỘP BÀI RỒI. HUHUHU :((((
a)Cho x+y+z=0.Chứng tỏ x^3+y^3+z^3=3xyz
b) phân tích đa thức thành nhân tử
(a-b)^3+(b-c)^3+(c-a)^3
#)Giải :
a) \(x+y+z=0\Leftrightarrow x+y=-z\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\Leftrightarrow x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)
\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\) hay 3xyz (đpcm)
b) \(x=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(\Leftrightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (Áp dụng hằng đẳng thức)
\(\Leftrightarrow x=\left[\left(b-c\right)^3+\left(c-a\right)^3\right]+\left(a-b\right)^3\)
\(=\left[\left(b-a\right)^3+\left(c-a\right)^3\right]-3\left(b-c\right)\left(c-a\right)\left[\left(b-c\right)+\left(c-a\right)\right]+\left(a-b\right)^3\)
\(=\left(b-a\right)^3-3\left(b-c\right)\left(c-a\right)\left(b-a\right)+\left(a-b\right)^3\)
\(=\left[-\left(a-b\right)^3\right]-3\left(b-c\right)\left(c-a\right)\left[-\left(a-b\right)\right]+\left(a-b\right)^3\)
\(=-\left(a-b\right)^3+3\left(a-b\right)\left(b-c\right)\left(c-a\right)+\left(a-b\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
1)Phân tích thành nhân tử:
a. (((x^2)+(y^2))^2)((y^2)-(x^2))+(((y^2)+(z^2))^2)((z^2)-(y^2))+(((z^2)+(x^2))^2)((x^2)-(z^2))
b. ((x-a)^4)+4a^4
c. (x^4)-(8x^2)+4
d. (x^8)+(x^4)+1
e. x((y^2)-(z^2))+y((z^2)-(x^2))+z((x^2)-(y^2))
f. (8x^3)(y+z)-(y^3)(z+2x)-(z^3)(2x-y)
g. (12x-1)(6x-1)(4x-1)(3x-1)-5
2) Cho (a^3)+(b^3)+(c^3)=3abc và abc khác 0. Tính A=(1+a/b)(1+b/c)(1+c/a).
3) Rút gọn phân thức:
((x^3)+(y^3)+(z^3)-3xyz)/(((x-y)^2)+((y-z)^2)+((z-x)^2))