Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Hồng Phúc
Xem chi tiết
Nguyen
28 tháng 9 2019 lúc 21:15

Ta có BĐT:\(\left(a^3+b^3+c^3\right)\left(m^3+n^3+p^3\right)\left(x^3+y^3+z^3\right)\ge\left(axm+byn+czp\right)^3\)(Cách c/m bn có thể tìm trên mạng)

Áp dụng ta có:\(\left(a^3+b^3+c^3\right).9\ge\left(a+b+c\right)^3=1\)

\(\Leftrightarrow a^3+b^3+c^3\ge\frac{1}{9}\)

\(a,b,c\ge0;a+b+c=1\)\(\Rightarrow0\le a,b,c\le1\)

Đến đây làm tiếp nhé.

Nguyễn Việt Lâm
28 tháng 9 2019 lúc 21:22

Sử dụng Cô-si đi cho đơn giản:

Dự đoán điểm rơi \(a=b=c=\frac{1}{3}\)

\(a\sqrt{a}+a\sqrt{a}+\frac{1}{3\sqrt{3}}\ge3\sqrt[3]{\frac{a^3}{3\sqrt{3}}}=\sqrt{3}a\)

Tương tự: \(b\sqrt{b}+b\sqrt{b}+\frac{1}{3\sqrt{3}}\ge\sqrt{3}b\); \(c\sqrt{c}+c\sqrt{c}+\frac{1}{3\sqrt{3}}\ge\sqrt{3}c\)

Cộng vế với vế:

\(2\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)+\frac{1}{\sqrt{3}}\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)

\(\Rightarrow2\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)\ge\frac{2\sqrt{3}}{3}\)

\(\Rightarrow a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\ge\frac{\sqrt{3}}{3}\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)

sjbjscb
Xem chi tiết
Phạm Minh Quang
5 tháng 10 2019 lúc 23:26

@Nguyễn Việt Lâm

Phạm Minh Quang
5 tháng 10 2019 lúc 23:27

@Vũ Minh Tuấn

tuấn lê
Xem chi tiết
Tuna Ngô
Xem chi tiết
Tuna Ngô
29 tháng 3 2022 lúc 21:46

Lời giải

Bất đẳng thức cần chứng minh được viết lại thành

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 5$

Ta chứng minh bất đẳng thức sau đây

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

Thật vậy, bất đẳng thức trên tương đương với

$latex \displaystyle \frac{{{\left( a-1 \right)}^{2}}\left( 2{{a}^{2}}+6a+3 \right)}{3{{a}^{2}}}\ge 0$

Hiển nhiên đúng với a là số thực dương.

Áp dụng tương tự ta được $latex \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{7}{3}-\frac{2b}{3};\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{7}{3}-\frac{2c}{3}$

Cộng theo vế các bất đẳng thức trên ta được

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 7-\frac{2\left( a+b+c \right)}{3}=5$

Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi $latex a=b=c=1$.

Chúng ta sẽ khởi đầu kỹ thuật này bằng việc đưa ra cách giải thích cho việc tìm ra bất đẳng thức phụ trên và nó cũng chính là cách giải thích cho các bài toán sau này của chúng ta.

Bài toán trên các biến trong cả hai vế và điều kiện đều không ràng buộc nhau điều này khiến ta nghĩ ngay sẽ tách theo từng biến để chứng minh được đơn giản hơn nếu có thể. Nhưng rõ ràng chỉ từng đó thôi là không đủ. Để ý đến dấu đẳng thức xẩy ra nên ta nghĩ đến chứng minh bất đẳng thức sau

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}\Leftrightarrow \frac{\left( a-1 \right)\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}\ge 0$

Tuy nhiên đánh giá trên không hoàn toàn đúng với a thực dương.

Để ý là với cách làm trên ta chưa sử dụng điều kiện .

Như vậy ta sẽ không đi theo đường lối suy nghĩ đơn giản ban đầu nữa mà sẽ đi tìm hệ số để bất đẳng thức sau là đúng

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+ma+n\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$

Trong đó m và n là các hệ số chưa xác định.

Thiết lập tương tự với các biến b và c ta được

$latex \displaystyle \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{5}{3}+mb+n;\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{5}{3}+mc+n$

Cộng theo vế các bất đẳng thức trên ta có

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}}{3}\ge 5+m\left( a+b+c \right)+3n=5+3\left( m+n \right)$

Như vậy ở đây 2 hệ số m và n phải thỏa mãn điều kiện $latex \displaystyle m+n=0\Leftrightarrow n=-m$. Thế vào (1) dẫn đến

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)$

Đến đây ta chỉ cần xác định hệ số duy nhất là m để bất đẳng thức (2) là đúng. Chú ý đẳng thức xẩy ra tại $latex a=b=c=1$ nên ta cần xác định m sao cho

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\Leftrightarrow \left( a-1 \right)\left( \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}-m \right)\ge 0$

Khi cho $latex a=1$ thì ta có $latex \displaystyle \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}=-\frac{2}{3}$ từ đó ta dự đoán rằng $latex \displaystyle m=-\frac{2}{3}$ để tạo thành đại lượng bình phương $latex {{\left( a-1 \right)}^{2}}$ trong biểu thức. Từ đó ta sẽ chứng minh bất đẳng thức phụ

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

Tiến Hoàng Minh
Xem chi tiết
Trần Tuấn Hoàng
2 tháng 3 2022 lúc 20:54

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.

Cô bé hạnh phúc
Xem chi tiết
quản đức phú
Xem chi tiết
Kiệt Nguyễn
7 tháng 6 2020 lúc 9:57

Áp dụng bất đẳng thức AM - GM cho các bộ bốn số không âm, ta được: \(LHS=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-zx}+\frac{2z^2+x^2+y^2}{4-xy}\)\(=\frac{x^2+x^2+y^2+z^2}{4-yz}+\frac{y^2+y^2+z^2+x^2}{4-zx}+\frac{z^2+z^2+x^2+y^2}{4-xy}\)\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\)

Như vậy, ta cần chứng minh: \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{zx}}{zx\left(4-zx\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)

Theo bất đẳng thức Cauchy-Schwarz, ta có: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)\rightarrow\left(a;b;c\right)\). Khi đó \(\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)

và ta cần chứng minh \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge1\)

Xét BĐT phụ:  \(\frac{x}{x^2\left(4-x^2\right)}\ge-\frac{1}{9}x+\frac{4}{9}\left(0< x\le1\right)\)(*)

Ta có: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(x^2-2x-9\right)}{9x\left(x-2\right)\left(x+2\right)}\ge0\)(Đúng với mọi \(x\in(0;1]\))

Áp dụng, ta được: \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge-\frac{1}{9}\left(a+b+c\right)+\frac{4}{9}.3\)

\(\ge-\frac{1}{9}.3+\frac{4}{3}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa

1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)

Chứng minh:

Ta có 2a2+b2+c2=(a2+b2)+(a2+c2)

Áp dụng bđt cauchy ta có

(a2+b2)+(a2+c2)\(\ge\)2ab+2ac=2a(b+c)

Kiệt Nguyễn
21 tháng 8 2020 lúc 20:33

Đặt vế trái của bất đẳng thức là \(K\)

Với x, y, z > 0, ta có: \(yz\le\frac{\left(y+z\right)^2}{4}< \frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\Rightarrow4-yz>0\)

Tương tự ta cũng có \(4-zx>0,4-xy>0\)

Ta viết lại bất đẳng thức cần chứng minh thành \(\frac{x^2+y^2+x^2+z^2}{xyz\left(4-yz\right)}+\frac{x^2+y^2+y^2+z^2}{xyz\left(4-zx\right)}+\frac{z^2+y^2+x^2+z^2}{xyz\left(4-xy\right)}\ge4\)

Áp dụng bất đẳng thức Cauchy ta có \(K\ge\frac{2xy+2xz}{xyz\left(4-yz\right)}+\frac{2xy+2yz}{xyz\left(4-zx\right)}+\frac{2xz+2yz}{xyz\left(4-xy\right)}\)\(=2\left[\frac{y+z}{yz\left(4-yz\right)}+\frac{z+x}{zx\left(4-zx\right)}+\frac{x+y}{xy\left(4-xy\right)}\right]\)\(=2\left[\frac{1}{z\left(4-yz\right)}+\frac{1}{x\left(4-zx\right)}+\frac{1}{y\left(4-xy\right)}\right]+\)      \(2\left[\frac{1}{y\left(4-yz\right)}+\frac{1}{z\left(4-zx\right)}+\frac{1}{x\left(4-xy\right)}\right]\) 

Lại áp dụng bất đẳng thức Cauchy cho các bộ ba số dương, ta có\(\frac{1}{z\left(4-yz\right)}+\frac{1}{x\left(4-zx\right)}+\frac{1}{y\left(4-xy\right)}\ge\frac{3}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)

\(\frac{1}{y\left(4-yz\right)}+\frac{1}{z\left(4-zx\right)}+\frac{1}{x\left(4-xy\right)}\ge\frac{3}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)

Do đó \(K\ge\frac{12}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}=\frac{12\sqrt[3]{3}}{\sqrt[3]{3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)

Mặt khác ta lại có: \(3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)\le\left(\frac{3xyz+12-xy-yz-zx}{4}\right)^4\)

Ta có bất đẳng thức quen thuộc \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\Leftrightarrow\frac{xy+yz+zx}{xyz}\ge3\)\(\Leftrightarrow3xyz-xy-yz-zx\le0\)

Suy ra \(3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)\le3^4=81\) \(\Rightarrow\sqrt[3]{3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}\le3\sqrt[3]{3}\)

Do đó \(K\ge\frac{12\sqrt[3]{3}}{3\sqrt[3]{3}}=4\)

Như vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Phương Trình Hai Ẩn
Xem chi tiết
alibaba nguyễn
1 tháng 6 2017 lúc 15:34

Bổ xung đề a,b,c dương 

1/ Chứng minh a < 1 

Ta có: \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\)

\(=ab+bc+ca-2\left(a+b+c\right)+3=9-2.6+3=0\)

Nếu \(1\le a< b< c\) thì \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)>0\)(mâu thuẫn)

\(\Rightarrow a< 1\)

Chứng minh b > 1 

Giả sử \(a< b\le1\Rightarrow ab< 1\)

Ta có: \(9=ab+c\left(a+b\right)< 1+c\left(a+b\right)\)

\(\Rightarrow c\left(a+b\right)>8\)

Ta có: \(\frac{c}{2}+\left(a+b\right)\ge2\sqrt{\frac{c}{2}.\left(a+b\right)}>2\sqrt{\frac{8}{2}}=4\)

Ta có: \(\hept{\begin{cases}a+b+c=6\\a+b+\frac{c}{2}>4\end{cases}}\)

\(\Rightarrow6-c+\frac{c}{2}>4\)

\(\Rightarrow c< 4\)

\(\Rightarrow a+b>2\)(trái giải thuyết)

\(\Rightarrow b>1\)

Tương tự làm phần còn lại nhé.

Thắng Nguyễn
1 tháng 6 2017 lúc 16:52

tui thấy cách cho THCS r` cho a,b,c la so thuc thoa man : a<b<c ; a+b+c=6 ; ab+bc+ac=9 . chung minh rang : 0<a<1<b<3<c<4? | Yahoo Hỏi & Đáp

Thắng Nguyễn
1 tháng 6 2017 lúc 17:42

Áp dụng hệ thức Vi-et dễ thấy \(a,b,c\) là nghiệm của \(f\left(x\right)=\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-6x^2+9x-abc\)

Mà định lí Rolle có truyền tụng rằng \(f'\) có nghiệm trên mỗi khoảng \(\left(a,b\right)\) và \(\left(b,c\right)\)

Nhưng \(f'\left(x\right)=3x^2-12x+9=3\left(x-1\right)\left(x-3\right)\)

Có 2 nghiệm là \(x_1=1;x_2=3\). Do đó

\(a< x_1=1< b< x_2=3< c\)

Rõ ràng rằng \(f\left(x\right)< 0\) trên \(\left(-\infty,a\right)\) và \(\left(b,c\right)\)

\(f\left(x\right)>0\) trên \(\left(a,b\right)\) và \(\left(c,\infty\right)\)

Khi \(f\left(4\right)=4-abc=f\left(1\right)>0\), do đó nghiệm lớn nhất thỏa mãn \(c< 4\)

Ta có ĐPCM

Võ Hồng Phúc
Xem chi tiết
tth_new
23 tháng 8 2019 lúc 19:44

Ta có: \(VT-VP\ge\frac{\left(a+b+c\right)^2}{3}-\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(\frac{a+b+c-3}{3}\right)\ge0\) (áp dụng bđt cô si cho 3 số dương)

P/s: Is it true? Trong sách nâng cao và pt toán 8 của tác giả vũ hữu bình em nhớ nó phức tạp lắm mà sao em làm lai đơn giản nhỉ?

Võ Hồng Phúc
23 tháng 8 2019 lúc 20:10

có đâu, ncptriển tập hai có đâu

alibaba nguyễn
28 tháng 8 2019 lúc 10:30

Ta có:

\(a+b+c\ge3\sqrt[3]{abc}=3\)

Ta lại có:

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\ge\frac{3\left(a+b+c\right)}{3}=a+b+c\)