Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh Thơ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 5 2020 lúc 16:10

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{\left(a+\sqrt{bc}\right)^2}=a+\sqrt{bc}\)

Tương tự: \(\sqrt{b+ac}\ge b+\sqrt{ac}\) ; \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Rightarrow VT\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}\)

\(\Rightarrow VT\ge a+b+c=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Dung Đặng Phương
Xem chi tiết
Phùng Minh Quân
25 tháng 1 2020 lúc 21:05

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

Khách vãng lai đã xóa
Nyatmax
25 tháng 1 2020 lúc 22:23

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

Khách vãng lai đã xóa
Nyatmax
26 tháng 1 2020 lúc 8:21

Cho o dong 2 la x,y,z nhe,ghi nham

Khách vãng lai đã xóa
lớp 10a1 tổ 1
Xem chi tiết
VUX NA
Xem chi tiết
黃旭熙.
4 tháng 9 2021 lúc 19:54

黃旭熙.
4 tháng 9 2021 lúc 19:55

Ủa bị lỗi hả:v? undefined

dilan
Xem chi tiết
loancute
Xem chi tiết
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 20:46

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

Nguyễn Việt Lâm
6 tháng 3 2021 lúc 20:48

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Bùi Thế Nam
Xem chi tiết
Le Dinh Quan
Xem chi tiết
Kiệt Nguyễn
4 tháng 6 2020 lúc 16:25

Theo giả thiết thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow ab+bc+ca=abc\)

Ta cần chứng minh: \(\Sigma\sqrt{a+bc}\ge\sqrt{abc}+\Sigma\sqrt{a}\)(*)

Thật vậy: (*) \(\Leftrightarrow\Sigma\sqrt{\frac{a^2+abc}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)

\(\Leftrightarrow\Sigma\sqrt{\frac{a^2+ab+bc+ca}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)\(\Leftrightarrow\Sigma\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)

\(\Leftrightarrow\text{​​}\Sigma\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\Sigma\sqrt{a}\right)\)(Nhân cả hai vế của bất đẳng thức với \(\sqrt{abc}>0\))

\(\Leftrightarrow\Sigma\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\Sigma a\sqrt{bc}\)

Bất đẳng thức cuối luôn đúng vì theo BĐT Cauchy-Schwarz, ta có: \(\Sigma\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\Sigma\left(bc+a\sqrt{bc}\right)=abc+\Sigma a\sqrt{bc}\text{​​}\)

Đẳng thức xảy ra khi a = b = c = 3

Khách vãng lai đã xóa
Quanglong Nguyen
26 tháng 6 2020 lúc 17:36

https://olm.vn/hoi-dap

Khách vãng lai đã xóa
Ác Quỷ Bóng Đêm
Xem chi tiết
Lightning Farron
10 tháng 8 2016 lúc 17:15

Cho các số thực không âm a,b,c. Chứng minh rằng:

poppy Trang
Xem chi tiết
Nguyễn Xuân Tiến 24
16 tháng 7 2018 lúc 20:05

Đặt VT= \(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\)

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki ta có:

\(VT^2=\left(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\right)^2\le\)

\(\le\left(1^2+1^2+1^2\right)\left(a+b+c+ab+bc+ca\right)\)

Lại có \(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)( tự cm nhé)

Từ đó \(VT^2\le3.\left(1+\dfrac{1}{3}\right)=4\) (do a+b+c=1)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)