Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
an nam
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 16:45

Với mọi a;b;c không âm ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Áp dụng:

a.

\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

b.

\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)

Dấu "=" xảy ra khi \(x=y=z=2\)

c.

\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
Aurora
Xem chi tiết
Aurora
29 tháng 12 2020 lúc 20:42

Nguyễn Việt Lâm

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 20:45

Đề sai, nếu \(x+y+z=3\) thì vế phải là \(3\sqrt{3}\)

Muốn vế phải là 3 thì \(x+y+z=1\)

\(VT\le\sqrt{3\left(x+2y+y+2z+z+2x\right)}=\sqrt{9\left(x+y+z\right)}=3\sqrt{3}\)

Ťɧε⚡₣lαsɧ
Xem chi tiết
Akai Haruma
27 tháng 12 2019 lúc 20:24

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq [(x+2y)+(y+2z)+(z+2x)](1+1+1)\)

\(\Leftrightarrow (\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq 9(x+y+z)=9\)

\(\Rightarrow \sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\leq 3\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{\sqrt{x+2y}}{1}=\frac{\sqrt{y+2z}}{1}=\frac{\sqrt{z+2x}}{1}\\ x+y+z=1\end{matrix}\right.\) hay $x=y=z=\frac{1}{3}$

Khách vãng lai đã xóa
Ťɧε⚡₣lαsɧ
25 tháng 12 2019 lúc 22:31

.

Khách vãng lai đã xóa
duong minh duc
Xem chi tiết
Lê Tài Bảo Châu
15 tháng 12 2019 lúc 23:01

sửa:\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{\left(x+2y\right).1}\le\frac{x+2y+1}{2}\)

\(\sqrt{\left(y+2z\right).1}\le\frac{y+2x+1}{2}\)

\(\sqrt{\left(z+2x\right).1}\le\frac{z+2x+1}{2}\)

Cộng từng vế đẳng thức trên ta được:

\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le\frac{3\left(x+y+z\right)+3}{2}=3\)

Dấu"="xảy ra \(\Leftrightarrow x+2y=1;y+2z=1;z+2x=1;x=y=z;x+y+z=1\)

                       \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy...

Khách vãng lai đã xóa
Nhạt
Xem chi tiết
vũ tiền châu
30 tháng 4 2018 lúc 8:51

Áp dụng BĐT bu-nhi-a , ta có \(\left(\sqrt{x+3}+2\sqrt{y+3}\right)^2\le\left(1+2\right)\left(x+3+2y+6\right)\le36\)

=> \(S\le6\)

dấu = xảy ra <=> x=y=1

Đậu Thị Bảo Ngọc
Xem chi tiết
Phạm Nguyễn Huyền Trâm
27 tháng 1 2022 lúc 14:36

Trước hết ta thấy rằng nếu có một trong hai số xy chẵn còn 2x+2y+1 không thể chia hết cho 

Đỗ Ngọc Diệp
Xem chi tiết
zZz Cool Kid_new zZz
25 tháng 3 2020 lúc 21:32

\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy  ra tại x=y=1/2

Khách vãng lai đã xóa
Nguyễn Linh Chi
25 tháng 3 2020 lúc 21:51

Có vẻ kết quả  bị sai Huy ơi.

Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!

Khách vãng lai đã xóa
An Vy
Xem chi tiết