Cho các số thực dương x,y thoả mãn \(x+2y\le3\). Chứng minh rằng \(x\sqrt{y}+y\sqrt{2x+2y}\le3\).
Giúp mình với, mình đang cần gấp
Cho các số thực không âm x, y, z thỏa mãn x + y + z = 6. CMR:
a, \(\sqrt{x+7}+\sqrt{y+7}+\sqrt{z+7}\le9\)
b, \(\sqrt{3x+2y}+\sqrt{3y+2z}+\sqrt{3z+2x}\le3\sqrt{10}\)
c, \(\sqrt{2x+5}+\sqrt{2y+5}+\sqrt{2z+5}\le9\)
Với mọi a;b;c không âm ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Áp dụng:
a.
\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)
b.
\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)
Dấu "=" xảy ra khi \(x=y=z=2\)
c.
\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)
cho các số thực dương x,y,z thoả mãn \(\sqrt{x}\) + \(\sqrt{y}\) + \(\sqrt{z}\) = 1
chứng minh rằng : \(\sqrt{\dfrac{xy}{x+y+2z}}\) + \(\sqrt{\dfrac{yz}{y+z+2x}}\) + \(\sqrt{\dfrac{zx}{z+x+2y}}\) ≤ \(\dfrac{1}{2}\)
cho x + y + z = 3
Chứng minh : \(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le3\)
Đề sai, nếu \(x+y+z=3\) thì vế phải là \(3\sqrt{3}\)
Muốn vế phải là 3 thì \(x+y+z=1\)
\(VT\le\sqrt{3\left(x+2y+y+2z+z+2x\right)}=\sqrt{9\left(x+y+z\right)}=3\sqrt{3}\)
Cho các số thực x,y,z thỏa mãn: x+y+z=1
Chứng minh: \(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le3\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq [(x+2y)+(y+2z)+(z+2x)](1+1+1)\)
\(\Leftrightarrow (\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq 9(x+y+z)=9\)
\(\Rightarrow \sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\leq 3\)
Ta có đpcm
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{\sqrt{x+2y}}{1}=\frac{\sqrt{y+2z}}{1}=\frac{\sqrt{z+2x}}{1}\\ x+y+z=1\end{matrix}\right.\) hay $x=y=z=\frac{1}{3}$
Cho 3 số thực x,y,z,dương và x+y+z=1
CMR: \(\sqrt{x+2y}+\sqrt{y+2x}+\sqrt{z+2x}\le3\)\(\le3\)
DÙNG CÔNG THỨC HAY HẰNG ĐẲNG THỨC NÀO THÌ GHI CÔNG THỨC TỔNG QUÁT RA GIÚP MK NHA
mk thanks trc
sửa:\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\)
Áp dụng bđt AM-GM ta có:
\(\sqrt{\left(x+2y\right).1}\le\frac{x+2y+1}{2}\)
\(\sqrt{\left(y+2z\right).1}\le\frac{y+2x+1}{2}\)
\(\sqrt{\left(z+2x\right).1}\le\frac{z+2x+1}{2}\)
Cộng từng vế đẳng thức trên ta được:
\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le\frac{3\left(x+y+z\right)+3}{2}=3\)
Dấu"="xảy ra \(\Leftrightarrow x+2y=1;y+2z=1;z+2x=1;x=y=z;x+y+z=1\)
\(\Leftrightarrow x=y=z=\frac{1}{3}\)
Vậy...
Cho x;y là 2 số thực dương thỏa mãn \(x+2y\le3\). Tìm GTLN của \(S=\sqrt{x+3}+2\sqrt{y+3}\)
Áp dụng BĐT bu-nhi-a , ta có \(\left(\sqrt{x+3}+2\sqrt{y+3}\right)^2\le\left(1+2\right)\left(x+3+2y+6\right)\le36\)
=> \(S\le6\)
dấu = xảy ra <=> x=y=1
Tìm các sô nguyên x,y thoả mãn x>y>1 và 2x+2y+1 chia hết cho xy. Các bạn giúp mình với, mình đang cần gấp. Mình cảm ơn!!!
Trước hết ta thấy rằng nếu có một trong hai số xy chẵn còn 2x+2y+1 không thể chia hết cho
Cho các số dương x,y thoả mãn x+y=1.Tìm GTNN của P=[2x+(1/x)]^2+[2y+(1/y)]^2. CÁC BẠN GIÚP MÌNH BÀI NÀY ĐC KO?MÌNH ĐANG CẦN GẤP!!!!!!!!
\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra tại x=y=1/2
Có vẻ kết quả bị sai Huy ơi.
Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!
Cho các số thực dương x,y,z thỏa mãn : \(x^2+y^2+z^2=\frac{3}{7}\)
Chứng minh rằng : \(\sqrt{8+14x}+\sqrt{8+14y}+\sqrt{8+14z}\le3+3\sqrt{7}\)