Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
đỗ phương anh
Xem chi tiết
꧁WღX༺
Xem chi tiết
Sofia Nàng
Xem chi tiết
Măm Măm
Xem chi tiết
Chii Chi
24 tháng 9 2019 lúc 21:15

a, A=\(\left(\frac{\sqrt{x}-2}{x-4}+\frac{\sqrt{x}+2}{x-4}\right)\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\frac{2}{\sqrt{x}+2}\)

Vậy với x > 0, x≠4thìa A=\(\frac{2}{\sqrt{x}+2}\)

b,A > 0,5 <=>\(\frac{2}{\sqrt{x}+2}\)>0.5

=>\(\frac{2}{\sqrt{x}+2}\)-\(\frac{1}{2}\)>0

=>\(\frac{2-\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)>0

=>2-\(\sqrt{x}\)>0

=>\(\sqrt{x}\)<2

=>x<4

kết hợp vs đkxđ, ta dược :0<x<4

Vậy vs 0<x<4 thì A > 0,5

123 nhan
Xem chi tiết
YangSu
14 tháng 8 2023 lúc 8:29

\(a,A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\left(dk:x\ge0,x\ne4\right)\\ =\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right)\\ =\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x-4+10-x}\)

\(=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\sqrt{x}-2}.\dfrac{1}{6}\\ =\dfrac{-6}{\left(\sqrt{x}-2\right).6}\\ =-\dfrac{1}{\sqrt{x}-2}\)
\(b,A>0\Leftrightarrow-\dfrac{1}{\sqrt{x}-2}>0\Leftrightarrow\sqrt{x}-2< 0\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0,x\ne4\), ta kết luận \(0\le x< 4\)

 

123 nhan
14 tháng 8 2023 lúc 7:44

Mình cần gấp nhớ đừng làm tắt nhé 

Kiều Vũ Linh
14 tháng 8 2023 lúc 8:32

A = [√x/(x - 4) + 2/(2 - √x) + 1/(√x + 2)] : [(√x - 2 + (10 - x)/(√x + 2)]

= [√x/(√x - 2)(√x + 2) - 2(√x + 2)/(√x - 2)(√x + 2) + (√x - 2)/(√x - 2)(√x + 2)] : [(x - 4 + 10 - x)/(√x + 2)]

= [√x - 2(√x + 2) + (√x - 2)]/[(√x - 2)(√x + 2)] : 6/(√x + 2)

= (√x - 2√x - 4 + √x - 2)/(√x - 2)(√x + 2)] . (√x + 2)/6

= -1/(√x - 2)

Để A > 0 thì -1/(√x - 2) > 0

√x - 2 < 0

√x < 2

x < 4

Vậy 0 ≤ x < 4 thì A > 0

Đỗ Minh Anh
Xem chi tiết
Phạm Thị Thùy Linh
4 tháng 8 2019 lúc 21:41

\(A=\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right)\)\(:\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-2}\right)\)

\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}-4-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{-3}\)\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

\(b,A=0\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=0\Leftrightarrow\sqrt{x}-2=0\)

Mà \(\sqrt{x}+2\ne0\)\(\Rightarrow\)không có giá trị nào  của x thỏa mãn \(A=0\)

Park Chanyeol
Xem chi tiết
Ngọc Vĩ
30 tháng 7 2016 lúc 22:20

a/ \(P=\left[1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\left(\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{9-x+x-4\sqrt{x}+4-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\frac{3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{13-4\sqrt{x}-9x}\)

\(=\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}\)

b/ \(P=1\Rightarrow\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}=1\Rightarrow3\sqrt{x}-6=13-4\sqrt{x}-9x\)

\(\Rightarrow9x+7\sqrt{x}-19=0\)

Mình k biết mình sai chỗ nào nữa, bạn xem giúp mình với