Cho tam giác DEF vuông tại D, phân giác ED.Kẻ BIvuông góc với EF tại I.Gọi H là giao điểm của ED và IB.Chứng minh:
a)tam giácEDB=tam giác EIB
bHB=BF
c)Gọi K là trung điểm của HF.Chứng minh 3 điểm E, B, K thẳng hàng
cho tam giác DEF vuông tại D phân giác EB .kẻ bi vuông góc với ef tại i. gọi h là giao điển của ed và ib.chứng minh
a,tam giác EDB=TAM Giac eib
b,hb=bf
c,db<bf
d,gọi k là trung điểm của hf.chứng minh ba điểm e,b,k thẳng hàng
a, Xét △EIB và ΔEDB có:
EB chung
Góc EDB = Góc EIB (=90 độ)
Góc DEB = Góc IEB (pg EB)
⇒△EIB = ΔEDB (ch-gn)
b, Xét △DHB và △IFB có:
góc HDB = góc FIB (=90 độ)
góc HBD = góc FBI (đối đỉnh)
BD = IB (△EIB = ΔEDB)
⇒ △DHB = △IFB (g.c.g)
c, Ta có HB = BF ( △DHB = △IFB)
mà DB < HB (cgv < c.huyền)
⇒ DB < BF
d, Ta có ED = EI (△EIB = ΔEDB)
DH = IF (△DHB = △IFB)
⇒ ED + DH = EI + IF
⇒ EH = EF
Xét △EHK và △EFK có:
EH = EF (cmt)
EK chung
HK = KF (K là trung điểm HF)
⇒△EHK = △EFK (c.c.c)
⇒ Góc HEK = Góc FEK ( góc t.ứng)
⇒ EK là phân giác góc HEF
mà EB là phân giác góc HEF
⇒ E, B, K thẳng hàng
Cho tam giác DEF vuông tại D, phân giác EB. Kẻ BI vuông góc với EF tại I. Goi H la giao diem cua ED va IB. CM:a) Tam giác EDB=EIB.b)HB=BFc)Gọi K là trung điểm của HF. . CM: E,B,K thẳng hàng d. DI//HF
Cho tam giác DEF vuuong tại D,phân giác EB.Kẻ BI vuông góc vs EF tại I.gọi H là giao điểm 2 tia SD và IB .CM:
a)Gọi K là trung điểm của HF .CM 3 điểm E,BK thẳng hàng
GT, KL, hình vẽ (tự làm)
a) Ta có: Góc DEB = góc FEB ( EB là tia phân giác)
Hay góc DEB = góc IEB
Xét ΔEDBΔEDB vuông tại D và ΔEIBΔEIB vuông tại I có:
EB chung
góc DEB = góc IEb (cmt)
⇒ΔEDB=ΔEIB⇒ΔEDB=ΔEIB (cạnh huyền- góc nhọn)
⇒DB=IB⇒DB=IB ( 2 cạnh t/ứ)
b) Xét ΔDBHΔDBH vuông tại D và ΔIBFΔIBF vuông tại I có:
DB = IB (cmt)
góc DBH = góc IBF (2 góc đối đỉnh)
⇒ΔDBH=ΔIBF(c.h−g.n)⇒ΔDBH=ΔIBF(c.h−g.n)
⇒BH=BF⇒BH=BF( 2 cạnh tương ứng)
c) Tự làm
d)c) t/g BDH = t/g BIF (câu b)
=> DH = IF (2 cạnh tương ứng)
Mà ED = EI (do t/g EDB = t/g EIB
=> DH + ED = IF + EI
=> EH = EF
t/g EHK = t/g EFK (c.c.c)
=> HEK = FEK (2 góc tương ứng)
=> EK là phân giác HEF (1)
Có: DEB = IEB (do t/g EDB = t/g EIB
=> EB là phân giác DEI (2)
Từ (1) và (2) => E,B,K thẳng hàng (đpcm)
A)Nối H với F
Ta có EI = ED (vì tam giác EDB = tam giác EIB) => EF - EI = EH - ED
=> DH = IF
Xét 2 tam giác vuông FHD và HFI có:
HF chung
DH = IF (cmt)
=> tam giác FHD = tam giác HFI (ch-cgv)
a) Xét ΔEDB vuông tại D và ΔEIB vuông tại I có
EB chung
\(\widehat{DEB}=\widehat{IEB}\)
Do đó: ΔEDB=ΔEIB(ch-gn)
Suy ra: ED=EI và DB=BI
Xét ΔDBH vuông tại D và ΔIBF vuông tại I có
BD=BI(cmt)
\(\widehat{DBH}=\widehat{IBF}\)(hai góc đối đỉnh)
Do đó: ΔDBH=ΔIBF(cgv-gnk)
Suy ra: DH=IF(hai cạnh tương ứng) và BH=BF(hai cạnh tương ứng)
Ta có: ED+DH=EH(D nằm giữa E và H)
EI+IF=EF(I nằm giữa E và F)
mà ED=EI(cmt)
và DH=IF(cmt)
nên EH=EF
Ta có: EH=EF(cmt)
nên E nằm trên đường trung trực của HF(1)
Ta có: BH=BF(cmt)
nên B nằm trên đường trung trực của HF(2)
Ta có: KH=KF(K là trung điểm của HF)
nên K nằm trên đường trung trực của HF(3)
Từ (1), (2) và (3) suy ra E,B,K thẳng hàng
Cho tam giác DEF vuông tại D, phân giác EB. Kẻ BI vuông góc với E tại I.Gọi H là giao điểm của ED và IB. CM:
a, ΔEDB=ΔEIB
b,HB=BF
c,DB<BF
d,Gọi K là trung điểm của HF . Chứng minh 3 điểm E,B,K thẳng hàng
a,xét tam giác vuông EDB(góc EDB=90 độ)và tam giác vuông EIB(góc EIB=90 độ)có:
EB chung
góc DEB =góc BEI(gt)
=> tam giác vuôngEDB= tam giác vuông IBF(góc FIB=90 độ)có:
góc DBH=góc IBF(đđ)
DB=BI(cmt)
=> tam giác vuông DBH= tam giác vuông IBF(góc nhọn kề cạnh góc vuông)
=>HB=BF(2 cah t/ứng)
c) có tam giác DBH vuông tại D(gt)
=>DB<HB(cah đối diện với góc lớn nhất)
mà BH=BF =>DB<BF
d,từ câu a=>ED=EI
có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF
=> tam giác EHF cân tại E(đl tam giác cân)
dựa vào trường hợp đặc biệt của tam giác cân:
có EB là tia phân giác=>EB c~ là đng trung tuyến (1)
mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)
=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB
hay E,B,K thẳng hàng
Cho tam giác DEF vuông tại D, phân giác EB. Kẻ
BI vuông góc với EF tại I. Gọi H là giao điểm của ED và
IB. Chứng minh:
a) Tam giác EDB = Tam giác EIB
b) Chứng minh tam giác BHF cân
a: Xét ΔEDB vuông tại D và ΔEIB vuông tại I có
EB chung
góc DEB=góc IEB
=>ΔEDB=ΔEIB
b: Xét ΔBDH vuông tại D và ΔBIF vuông tại I có
BD=BI
góc DBH=góc IBF
=>ΔBDH=ΔBIF
=>BH=BF
=>ΔBHF cân tại B
cho tam giác DEF vuông tại D, phân giác EB. Kẻ BI vuông góc EF tại I. Gọi H là giao điểm của ED và IB. CM:
a. tam giác EDB= tam giác EIB
b. HB=BF
c. gọi K là trung điểm của HF. Chứng minh 3 điểm E,B,K thẳng hàng
d. DI//HF
mk đưa lick cho bn đc k ?
a, Xét △EIB và ΔEDB có:
EB chung
Góc EDB = Góc EIB (=90 độ)
Góc DEB = Góc IEB (pg EB)
⇒△EIB = ΔEDB (ch-gn)
b, Xét △DHB và △IFB có:
góc HDB = góc FIB (=90 độ)
góc HBD = góc FBI (đối đỉnh)
BD = IB (△EIB = ΔEDB)
⇒ △DHB = △IFB (g.c.g)
c, Ta có HB = BF ( △DHB = △IFB)
mà DB < HB (cgv < c.huyền)
⇒ DB < BF
d, Ta có ED = EI (△EIB = ΔEDB)
DH = IF (△DHB = △IFB)
⇒ ED + DH = EI + IF
⇒ EH = EF
Xét △EHK và △EFK có:
EH = EF (cmt)
EK chung
HK = KF (K là trung điểm HF)
⇒△EHK = △EFK (c.c.c)
⇒ Góc HEK = Góc FEK ( góc t.ứng)
⇒ EK là phân giác góc HEF
mà EB là phân giác góc HEF
⇒ E, B, K thẳng hàng
Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .
Chứng minh : a) ΔEDB = Δ EIB ;
b) HB = BF
c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;
d) DI // HF
a) Xét 2 tam giác vuông EDB và EIB có
EB chung
Góc EDB = Góc EIB = 90độ
Góc DEB = Góc IEB (vì EB là phân giác của Góc E)
=> tam giác EDB = tam giác EIB (ch-gn)
b) Nối H với F
Ta có EI = ED (vì tam giác EDB = tam giác EIB) => EF - EI = EH - ED
=> DH = IF
Xét 2 tam giác vuông FHD và HFI có:
HF chung
DH = IF (cmt)
=> tam giác FHD = tam giác HFI (ch-cgv)
Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED
và IB . Chứng minh :
a) ΔEDB = ΔTam giác EIB
b) HB = BF
c) DB < BF
d) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng
a, Xét △EIB và ΔEDB có:
EB chung
Góc EDB = Góc EIB (=90 độ)
Góc DEB = Góc IEB (pg EB)
⇒△EIB = ΔEDB (ch-gn)
b, Xét △DHB và △IFB có:
góc HDB = góc FIB (=90 độ)
góc HBD = góc FBI (đối đỉnh)
BD = IB (△EIB = ΔEDB)
⇒ △DHB = △IFB (g.c.g)
c, Ta có HB = BF ( △DHB = △IFB)
mà DB < HB (cgv < c.huyền)
⇒ DB < BF
d, Ta có ED = EI (△EIB = ΔEDB)
DH = IF (△DHB = △IFB)
⇒ ED + DH = EI + IF
⇒ EH = EF
Xét △EHK và △EFK có:
EH = EF (cmt)
EK chung
HK = KF (K là trung điểm HF)
⇒△EHK = △EFK (c.c.c)
⇒ Góc HEK = Góc FEK ( góc t.ứng)
⇒ EK là phân giác góc HEF
mà EB là phân giác góc HEF
⇒ E, B, K thẳng hàng
Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED
và IB . Chứng minh :
a) ΔEDB = ΔTam giác EIB
b) HB = BF
c) DB < BF
d) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng
Giúp mình với
a,xét tam giác vuông EDB(góc EDB=90 độ)và tam giác vuông EIB(góc EIB=90 độ)có:
EB chung
góc DEB =góc BEI(gt)
=> tam giác vuôngEDB= tam giác vuông IBF(góc FIB=90 độ)có:
góc DBH=góc IBF(đđ)
DB=BI(cmt)
=> tam giác vuông DBH= tam giác vuông IBF(góc nhọn kề cạnh góc vuông)
=>HB=BF(2 cah t/ứng)
c) có tam giác DBH vuông tại D(gt)
=>DB<HB(cah đối diện với góc lớn nhất)
mà BH=BF =>DB<BF
d,từ câu a=>ED=EI
có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF
=> tam giác EHF cân tại E(đl tam giác cân)
dựa vào trường hợp đặc biệt của tam giác cân:
có EB là tia phân giác=>EB c~ là đng trung tuyến (1)
mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)
=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB
hay E,B,K thẳng hàng
------------------ // Tokyo Ghoul //----------------------------------
a, xét tam giác BIE và tam giác BDE có : BE chung
góc BDE = góc BIE = 90
góc BED = góc IEB do EB là phân giác của góc DEF (gt)
=> tam giác BIE = tam giác BDE (Ch-gn)
b, tam giác BIE = tam giác BDE (Câu a)
=> BI = BD (đn)
xét tam giác FBI và tam giác HBD có : góc FBI = góc HBD (đối đỉnh)
góc FIB = góc BDH = 90
=> tam giác FBI = tam giác HBD (2cgv)
=> HB = BF (đn)
c, BD = BI (câu b)
BI < BF do tam giác BFI vuông tại I
=> BD < DF