Giải phương trình \(5x^2+4y^2+2=4xy+2x+4y\\\)
tim min k=5x^2+4y^2-4xy+4y+2x+3
k =(2x-y)2 + (x+1)2 +( y +2)2 +2y2 -5+3
gtnn k = -2
Ta có K = (x2 + 4y2 + 1 - 4xy - 2x + 4y) + (4x2 + 4x + 1) + 1 = (2y - x + 1)2 + (2x + 1)2 + 1 >= 1
Vậy GTNN là -1 đạt được tại x = -0,5; y = - 0,25
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)
\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)
\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)
5x ^2 +4y^2 - 4xy + 4y +2x +3
Tim Min
giải phương trình
\(3x^2+4y^2+5z^2+4xy-4yz-6xz-2x-4y-2z+3=0\)
mk sửa lại đoạn sau:
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x-1=0\\2z-x-1=0\\2y+x-z-1=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\2z-2=0\\2y-z=0\left(x-1=0\right)\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\z=1\\2y=1\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\z=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Ta có:
3x2+4y2+5z2+4xy-4yz-6xz-2x-4y-2z+3=0
<=> 4y2+4yx-4yz-4y+x2-2xz+z2-2x+2z+1+4z2-4xz-4z+x2+2x+1+x2-2x+1=0
<=>4y2+4y(x-z-1)+(x-z)2-2(x-z)+1+4z2-4z(x+1)+(x+1)2+(x-1)2=0
<=>4y2+4y(x-z-1)+(x-z-1)2+(2z-x-1)2+(x-1)2=0
<=>(2y+x-z-1)2+(2z-x-1)2+(x-1)2=0
<=>\(\left\{{}\begin{matrix}x-1=0\\2z-x-1=0\\2y+x-z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2z=0\left(x-1=0\right)\\2y-z=0\left(x-1=0\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\z=0\\y=0\end{matrix}\right.\)
Vay....
Rút gọn:
\(\frac{2x^2-4xy}{x^2+4xy+4y^2}\): \(\frac{4y^2-x^2}{x^2-4xy+4y^2}\): \(\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^2}\)
5x^2+4y^2-4xy-12y+2x+2023
tìm gtln
A=5-2x^2-4y^2+4xy-8x-12y
B=2-5x^2-y^2-4xy+2x
Ai giải hộ 4xy+x^2-xz+4y^2-2yz
4xy+x^2-xz+4y^2-2yz
4x^2-[5x-4]^2=0
x^3-6x^2+9x-4=0