Giả sử ABCD là hình vuông nội tiếp tam giác MNP với A thuộc MN, B thuộc MP,C,D thuộc NP.Tính độ dài các cạnh của hình vuông ABCD biết NP=3 và đường cao MK=6
Cho hình chữ nhật ABCD có diện tích là 48cm^2 nội tiếp trong tam giác MNP ( A,B thuộc MP, C nằm trên cạnh NP, D nằm trên cạnh MN). Biết MP=30cm, đường cao NH của tam giác MNP bằng 10cm. Tính độ dài các cạnh của hình chữ nhật ABCD.
Cho tam giác MNP vuông tại M (MN<MP). Vẽ đường cao MH(H thuộc NP)
a. Chứng minh tam giác MNP đồng dạng với tam giác HNM
b. Chứng minh MN^2=NH.NP
c. Vẽ tia phân giác MK của góc NMP (K thuộc NP). Biết MN=7,2 cm và MP=9,6 cm. Tính độ dài các đoạn thẳng NP, NH và MK.
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
Mình nghĩ MK nên áp dụng ta lét nhé
7,2/x = 12/9,6-x
<=>7,2 . (9.6-x) = 12.x
<=>69,12 - 7,2x = 12x
<=>69,12 = 12x + 7,2x
<=> 69,12 = 19, 2
<=> x = 69,12 : 19,2 = 3,6
Vậy MK bằng 3,6cm
(mình ko chắc đúng ko nhưng theo mình là vậy)
Cho tam giác MNP vuông tại M có MN=5cm MP=12cm kẻ đường cao MH(H thuộc NP)
a) chứng minh tam giác HNM Đồng dạng với tam giác MNP b)tính độ dài các đường thẳng NP MH c)trong MNP kẻ phân giác MD (D thuộc MN) Tam giác MDP kẻ phân giác DF(F thuộc MP) chứng minh EM/EN =DN/DP=FP/FM=1
Cho tam giác MNP vuông tại M có MN=8cm, MP=15cm, đường cao MK, vẽ KE vuông góc với MN( E thuộc MN), KF vuông góc với MP(F thuộc MP).
a, Tính NP , MK?
b, tứ giác MEKF là hình gì? vì sao? tính EF?
c, C/M: ME.MN = MF.MP?
a: NP=căn 8^2+15^2=17cm
MK=8*15/17=120/17cm
b: góc MEK=góc MFK=góc FME=90 độ
=>MEKF là hình chữ nhật
=>MK=EF=120/17cm
c: ΔMKN vuông tại K có KE là đường cao
nên ME*MN=MK^2
ΔMKP vuông tại K có KF là đường cao
nên MF*MP=MK^2
=>ME*MN=MF*MP
Mn vẽ hình giúp mk với!!
Cho tam giác MNP vuông tại M có N = 60 độ .Kẻ tia phân giác của tam giác MNP (a thuộc MP).Gọi B là hình chiếu vuông góc của A trên NP. C là hình chiếu vuông góc của B trên đường thẳng NA.
Mn vẽ hình giúp mk với!!
Cho tam giác MNP vuông tại M có N = 60 độ .Kẻ tia phân giác của tam giác MNP (a thuộc MP).Gọi B là hình chiếu vuông góc của A trên NP. C là hình chiếu vuông góc của B trên đường thẳng NA.
Cho tam giác MNP cân tại A có MN = MP = 5 cm ; NP= 8cm
Kẻ MH vuông góc với NP (H thuộc NP).
a. Chứng minh HN = HP và
b. Tính độ dài MH
c. Kẻ HD vuông góc MN (D thuộc MN) Kẻ HE vuông góc MP (E thuộc MP).Chứng minh DHDE là tam giác cân.
a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H
Cho tam giac MNP vuông tại N, MN=12cm, MP=16cm vẽ đường cao MI (i thuộc np) và tia phân giác của tam giác của góc m cắt NP tại E
a) chứng minh tam giác INM đồng dạng tam giác MNP
b tính độ dài cạnh NP
c tính tỉ số diện tích của 2 tam giác MNE và MPE
d tính độ dài các đoạn thẳng NE và PE
e tính độ dài chiều cao MI
cho tam giác MNP vuông tại M có MN nhỏ hơn MP. Vẽ ME vuông góc với MP(E thuộc NP) K là điểm thuộc cạnh MP sao cho MN=MK. Vẽ K vuông góc NP(L thuộc NP). CMR:MEL là tam giác cân