cho \(\sqrt[3]{2+\sqrt{3}}-\sqrt[3]{\sqrt{28}-1}+2\)
tính M= x^3-6x^2+21x+2019
1/Cho \(x+y+z+\sqrt{xyz}=4\)
Tính giá trị biểu thức \(T=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-x\right)\left(4-z\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)
2/Cho \(x=\sqrt[3]{4+2\sqrt{2}}+\sqrt[3]{4-2\sqrt{2}}\)
Tính giá trị biểu thức \(F=\left(x^3-6x-10\right)^{2019}\)
3/Cho \(x=\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\sqrt{3}+2}}\)
Tính giá trị biểu thức \(P=x^2+\frac{x-1}{2}\)
4/Cho \(x=\sqrt{28-10\sqrt{3}}\)
Tính giá trị biểu thức \(F=\frac{2x^4-21x^3+55x^2-32x-4012}{x^2-10x+20}\)
Phương pháp 3. Sử dụng phép đặt ẩn phụ
a \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
b \(x^2-6x+9=4\sqrt{6-6x+x^2}\)
c \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
d \(x^2+8x-3=2\sqrt{x\left(8+x\right)}\)
a) ĐK: \(x^2+7x+7\ge0\)
Đặt \(a=\sqrt{x^2+7x+7}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
b) ĐK: \(x^2-6x+6\ge0\)
Đặt \(a=\sqrt{x^2-6x+6}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)
=> Dấu = ko xảy ra hay pt vô nghiệm
C2: Đk:\(x>0\)
Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)
Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\)
\(\Delta =-15<0 \) => Pt vô nghiệm
Vậy...
d) Đk: \(x\le-8;x\ge0\)
Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)
Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)
Vậy...
Cho x=\(\sqrt[3]{4+2\sqrt{2}}+\sqrt[3]{4-2\sqrt{2}}\)
Tính giá trị biểu thức:F=\(\left(x^3-6x-10\right)^{2019}\)
Ta có \(x^3=4+2\sqrt{2}+4-2\sqrt{2}+3\sqrt[3]{\left(4+2\sqrt{2}\right)\left(4-2\sqrt{2}\right)}x\)
=> \(x^3=8+6x\Rightarrow x^3-6x-10=-2\Rightarrow\left(x^3-6x-10\right)=-2^{2019}\)
^_^
Bài 1. cho \(f\left(x\right)=\left(2x^3-21x-29\right)^{2019}\). Tính f(x) tại \(x=\sqrt[3]{7+\sqrt{\frac{49}{8}}}+\sqrt[3]{7-\sqrt{\frac{49}{8}}}\)
Bài 2. Tìm số tự nhiên n biết rằng: \(\frac{1}{\sqrt{1^3+2^3}}+\frac{1}{\sqrt{1^3+2^3+3^3}}+...+\frac{1}{\sqrt{1^3+2^3+3^3+...+n^3}}=\frac{2015}{2017}\)
Bài 3. Tính \(A=\left(3x^3+8x^2+2\right)\)với \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Bài 4. CMR: \(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n.\sqrt{\frac{n+1}{2}}\)
Nhìn cái đề bài đáng sợ kinh, ai giúp tớ vs
1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)
\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)
\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)
Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)
2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)
Áp dụng công thức trên ta được n=2016
3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)
\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)
Thay x=1/3 vào A ta được;
\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)
Bài 4
ÁP DỤNG BĐT CAUCHY
là ra
\(\frac{1}{\sqrt{1^3+2^3}}+\frac{1}{\sqrt{1^3+2^3+3^3}}+...+\frac{1}{\sqrt{1^3+2^3+3^3+...+n^3}}=\frac{2015}{2017}\) (1)
Cần CM: \(1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\) quy nạp nhé bn, trên mạng có nhìu
(1) \(\Leftrightarrow\)\(\frac{1}{\sqrt{\left(1+2\right)^2}}+\frac{1}{\sqrt{\left(1+2+3\right)^2}}+...+\frac{1}{\sqrt{\left(1+2+3+...+n\right)^2}}=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+n}=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+...+\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2015}{2017}\)
\(\Leftrightarrow\)\(n=2016\)
Tính \(A=\left(21x^2+6x\right)^{2018}\) biết \(x=\sqrt{\sqrt{3}-\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
ta có : \(x=\sqrt{\sqrt{3}-\sqrt{5-\sqrt{13+4\sqrt{3}}}}=\sqrt{\sqrt{3}-\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{\sqrt{3}-\sqrt{3}+1}=1\)
\(\Rightarrow A=\left(21x^2+6x\right)^{2018}=\left(21\left(1\right)^2+6.1\right)^{2018}=27^{2018}\)
giải pt
a.\(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
b.\(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
c.\(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6x\)
a,ĐK: x≥4
Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}=4\)
\(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)
b, ĐK: x≥2
Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)
Cho \(x=\sqrt[3]{4+2\sqrt{2}}+\sqrt[3]{4-2\sqrt{2}}\)
Tính giá trị biểu thức:\(F=\left(x^3-6x-10\right)^{2019}\)
Cho \(x=\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}+\sqrt[3]{3-2\sqrt{2}}\)
Tính \(P=\left(2x^3-6x+2008\right)^{2020}\)
Giúp với ạ
Đề bài không chính xác rồi em
Muốn khử được căn ba thì trong biểu thức \(\left(2x^2-6x+2008\right)^{...}\) phải có bậc 3, mà ở đây chỉ có bậc 2
\(x=\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\)
\(x^3=6+3\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\)
\(x^3=6+3x\)
\(x^3-3x=6\)
\(P=\left[2\left(x^3-3x\right)+2008\right]^{2020}=\left(2.6+2008\right)^{2020}=2020^{2020}\)
Giải phương trình :
1) \(x^4-2\sqrt{3}x^2+x+3-\sqrt{3}\)
2) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
3) \(36\sqrt[3]{2\left(x^2-1\right)\left(x^3-8x^2+21x-14\right)}=\left(x^2+15\right)\left(x^2-6x+15\right)\)