Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Nàng Song Tử
Xem chi tiết
soyeon_Tiểubàng giải
20 tháng 9 2016 lúc 17:59

A = 1.2 + 2.3 + 3.4 + ... + 100.101

3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 100.101.(102-99)

3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 100.101.102 - 99.100.101

3A = (1.2.3 + 2.3.4 + 3.4.5 + ... + 100.101.102) - (0.1.2 + 1.2.3 + 2.3.4 + ... + 99.100.101)

3A = 100.101.102 - 0.1.2

3A = 100.101.102

A = 100.101.34

A = 343400

Hà Văn Hoàng Anh
Xem chi tiết
Nguyễn Tuấn Minh
7 tháng 4 2017 lúc 21:50

3A=1.2.3+2.3.3+3.4.3+...+19.20.3

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+19.20.(21-18)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20

3A=19.20.21

=> \(A=\frac{19.20.21}{3}=2660\)

Nguyễn Vĩnh Phú
23 tháng 4 2017 lúc 19:02

mk dùng cách của lớp 8 nha bạn ;

ta có công thức xích ma như sau x(x+1)

nhập vào xích ma ta có kết quả 2660

Đỗ Hà My
23 tháng 1 2019 lúc 9:34

Ta có;

A=1.2+2.3+3.4+.....+19.20

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+....+19.20.(21-18)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+19.20.21-18.19.20

A=19.20.21 = 2660

        3

Ngu Như Bò
Xem chi tiết
nguyễn thùy linh
Xem chi tiết

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)

\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)

\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=9\left(1-\frac{1}{2020}\right)\)

\(=9.\frac{2019}{2020}\)

\(=\frac{18171}{2020}\)

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
13 tháng 3 2020 lúc 13:20

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)

\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(A=9\left(1-\frac{1}{2020}\right)=\frac{9.2019}{2020}=\frac{18171}{2020}\)

...

Khách vãng lai đã xóa
✎✰ ๖ۣۜLαɗσηηα ༣✰✍
13 tháng 3 2020 lúc 13:21

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(A=9.\left(1-\frac{1}{2020}\right)\)

\(A=9.\left(\frac{2020}{2020}-\frac{1}{2020}\right)\)

\(A=9.\frac{2019}{2020}\)

\(A=\frac{18171}{2020}\)

hok tốt!

Khách vãng lai đã xóa
Ngu Như Bò
Xem chi tiết
VRCT_Ran Love Shinichi
13 tháng 9 2016 lúc 16:07

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

Nguyễn Đình Chí
12 tháng 10 2022 lúc 21:53

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

Đạt Tiến
Xem chi tiết
Kurosaki Akatsu
5 tháng 3 2017 lúc 13:53

A = 1.2 + 2.3 + 3.4 + ...... + 100.101

3A = 1.2.3 + 2.3.3 + 3.4.3 + ...... + 100.101.3

3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ..... + 100.101.(102 - 99)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...... + 100.101.102 - 99.100.101

3A = 100.101.102

A = 100.101.34

A = 343400

Nguyễn Công Binh
Xem chi tiết
Nguyễn Công Binh
12 tháng 12 2023 lúc 21:28

các bạn giúp mk với

 

Kiều Vũ Linh
12 tháng 12 2023 lúc 21:34

A = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101

⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3

= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)

= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 + ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102

= 100.101.102

= 1030200

⇒ A = 1030200 : 3

= 343400

Porn
11 tháng 10 lúc 19:16

Ko

 

Tiến Đạt
Xem chi tiết
Hoàng Thị Ngọc Anh
5 tháng 3 2017 lúc 14:13

Ta có: \(A=1.2+2.3+3.4+...+100.101\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+100.101.3\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+100.101\left(102-99\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)

\(\Rightarrow3A=\left(1.2.3-1.2.3\right)+...+\left(99.100.101-99.100.101\right)+100.101.102\)

\(\Rightarrow3A=\) \(100.101.102\)

\(\Rightarrow A=\dfrac{100.101.102}{3}=343400\)

Vậy \(A=343400.\)

Miko
5 tháng 3 2017 lúc 14:06

A = 1.2+2.3+3.4+.....+100.101

3A = 1.2.3+2.3.4+3.4.3+...........+99.100.3

3A= 1.2.(3-0)+ 2.3.(4-1)+ 3.4.(5-2)....... . 99.100.(101-98)

3A=(1.2.3+2.3.4+3.4.5+......+99.100.101)-(0.1.2 + 1.2.3 + 2.3.4 +........+98.99.100)

3A = 99.100.101 - 0.1.2

3A = 999900 - 0

3A = 999900

=> A = 999900 : 3

=> A = 333300

Aki Tsuki
5 tháng 3 2017 lúc 14:13

câu này trên gg có r` bn!! bn lên tra nhé! mk k lm lại nx! Tiến Đạt

ps: gg là google

Nguyên Tiến Đạt
Xem chi tiết
Phung Phuong Nam
3 tháng 4 2016 lúc 20:53

A = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100 + 100.101

3.A = 1.2.3 + 2.3.3 +3.4.3 + ... + 100.101.3

3A= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 2.3.4 -3.4.5 + ... +99.100.101 -100.101.102

3A = 99.100.101

A = 99.100.101 : 3

A = 33.100.101

Vậy A = 33. 100 .101 (Tự tính)

Nguyên Tiến Đạt
6 tháng 4 2016 lúc 19:42

A=1.2+2.3+3.4+.....+99.100+100.101

Phạm Nà Ní
22 tháng 9 2018 lúc 15:16

333300