Cho biết sô phần tử của tập hợp sau :
\(F=\left\{n\inℕ/2n=1\right\}\)
\(G=\left\{\times|\times=2n;n\inℕ\right\}\)
1. Cho tập \(X=\left\{1,2,...,n\right\}\), ở đó \(n\inℕ^∗\). Chứng minh rằng số các tổ hợp gồm \(r\) phần tử của \(X\) không chứa bất kì 2 phần tử liên tiếp nào là \(C^r_{n-r+1}\) với \(0\le r\le n-r+1\)
2. Một hoán vị \(x_1,x_2,...,x_{2n}\) của tập \(\left\{1,2,...,2n\right\}\) (với \(n\inℕ\)) được gọi là có tính chất \(T\) nếu \(\left|x_i-x_{i+1}\right|=n\) với ít nhất một chỉ số \(i\) thuộc tập \(\left\{1,2,...,2n-1\right\}\). Chứng minh rằng với mọi \(n\) , có nhiều hoán vị có tính chất \(T\) hơn là những hoán vị không có tính chất \(T\).
Giúp mình làm những bài này với. Mình nghĩ mãi vẫn không nghĩ ra lời giải nào thỏa đáng. Mình cảm ơn trước.
CHO TẬP HỢP \(A=\left\{2n+1:n\in N,n<10\right\}\)
A)HÃY LIỆT KÊ PHẦN TỬ CỦA TẬP HỢP A
B)TÍNH SỐ PHẦN TỬ CỦA TẬP HỢP A
C)TÍNH SỐ TẬP CON CỦA TẬP HỢP A
Số phần tử của tập hợp \(B=\left\{x=\dfrac{3n^2-2n+1}{2}/\left\{{}\begin{matrix}n\in N^{\cdot\circledast}\\0< x< 171\end{matrix}\right.\right\}\)
0<x<171
nên 0<3n^2-2n+1<342
=>3n^2-2n+1<342
=>3n^2-2n-341<0
=>\(-\dfrac{31}{3}< n< 11\)
mà n là số nguyên dương
nên \(n\in\left\{1;2;...;9;10\right\}\)
1. Cho \(f\left(x\right)=x^{2n}-x^{2n-1}+x^{2n-2}-...+x^2-x+1\)
\(g\left(x\right)=1-x+x^2-...+x^{2n-2}-x^{2n-1}+x^{2n}\)
Tính giá trị của đa thức h(x) tại x=2012, biết \(h\left(x\right)=\left(f\left(x\right)+g\left(x\right)\right).\left(g\left(x\right)-f\left(x\right)\right)\)
2. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với \(a\ne0\), biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với \(a\ne0\), biết g(-2) = 9, g(-1) = 2, g(1)=6
3. a) Đa thức f(x) = ax + b \(\left(a\ne0\right)\). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c \(\left(a\ne0\right)\). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
Rut gon phan so sau :
a)\(\frac{9^{14\times}25^5\times8^7}{18^{12}\times625^3\times24^3}\)
b)\(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}\)
c)\(\frac{1\times3\times5\times...\times\left(2n-1\right)}{\left(n+1\right)\times\left(n+2\right)\times\left(n+3\right)\times...\times2n}\)
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{9^{12}.9^2.25^5.8^3.8^5}{9^{12}.2^{12}.25^6.8^3.3^3} =\frac{3^4.8^5 }{8^4.3^3}=3.8=24\)
Tính\(\left(1-\frac{4}{1}\right)\times\left(1-\frac{4}{9}\right)\times\left(1-\frac{1}{25}\right)\times......\times\left(1-\frac{4}{2n-1}\right)\)
Ta có: \(1-\frac{4}{1}=-3=-\frac{2.1+1}{2.1-1}\)
\(-3.\left(1-\frac{4}{9}\right)=-3.\frac{5}{9}=-\frac{5}{3}=-\frac{2.2+1}{2.2-1}\)
\(-\frac{5}{3}.\left(1-\frac{1}{25}\right)=-\frac{5}{3}.\frac{21}{25}=-\frac{7}{5}=-\frac{2.3+1}{2.3-1}\)
.................................................................................
Vậy kết quả cuối cùng của biểu thức là: \(-\frac{2n+1}{2n-1}\)
CM: \(2^{2n}.\left(2^{2n+1}-1\right)-1⋮9\left(n\inℕ^∗\right)\)
gọi S là tập hợp các giá trị của a để \(lim\left(\dfrac{\left(1-2an\right)^2}{4n^2-2n+1}-2a-4\right)=0\). tính tổng các phần tử của S?
Thầy tui cho cái ghi nhớ thế này \(\lim\limits\left(u_n-a\right)=0\Leftrightarrow\lim\limits u_n=a\) . Cơ mà theo tui cứ nên biến đổi từ từ đã :v
\(\lim\limits\left(\dfrac{1-4an+4a^2n^2-8an^2+4an-2a-16n^2+8n-4}{4n^2-2n+1}\right)\)
\(=\lim\limits\dfrac{4a^2n^2-8n^2\left(a+2\right)-2a+8n-3}{4n^2-2n+1}=\lim\limits\dfrac{4a^2-8\left(a+2\right)}{4}=0\Leftrightarrow a^2-2a-4=0\Leftrightarrow\left[{}\begin{matrix}a=1+\sqrt{5}\\a=1-\sqrt{5}\end{matrix}\right.\Rightarrow tong-S=2\)
Cho \(2n\) \(\left(n\inℕ^∗\right)\) khối gỗ được đánh số \(1,1,2,2,3,3,...,n,n\) như sau:
...
Ta cần xếp \(2n\) khối gỗ này vào một dãy gồm \(2n\) ô trống như bên dưới:
...
Biết rằng các điều kiện sau được thỏa mãn:
i) Mọi ô trống đều có khối gỗ và chỉ 1 khối gỗ duy nhất.
ii) Có \(i\) ô ở giữa 2 ô chứa 2 khối gỗ được đánh số \(i\) \(\left(1\le i\le n\right)\).
Ví dụ: Với \(i=2\) thì 2 khối gỗ có thể xếp như sau:
2 | 2 |
...
a) Hãy chỉ ra 1 cách xếp thỏa mãn các điều kiện trên với \(n=3,n=4\).
b) Hỏi với \(n=2022\) thì có tồn tại cách xếp thỏa mãn đề bài hay không?
(Câu hỏi này không đâu khác lại chính là từ em mình mà ra. Các bạn giúp mình với.)