Bài 1: Giới hạn của dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

gọi S là tập hợp các giá trị của a để \(lim\left(\dfrac{\left(1-2an\right)^2}{4n^2-2n+1}-2a-4\right)=0\). tính tổng các phần tử của S?

Hoàng Tử Hà
6 tháng 2 2021 lúc 16:43

Thầy tui cho cái ghi nhớ thế này \(\lim\limits\left(u_n-a\right)=0\Leftrightarrow\lim\limits u_n=a\) . Cơ mà theo tui cứ nên biến đổi từ từ đã :v

\(\lim\limits\left(\dfrac{1-4an+4a^2n^2-8an^2+4an-2a-16n^2+8n-4}{4n^2-2n+1}\right)\)

\(=\lim\limits\dfrac{4a^2n^2-8n^2\left(a+2\right)-2a+8n-3}{4n^2-2n+1}=\lim\limits\dfrac{4a^2-8\left(a+2\right)}{4}=0\Leftrightarrow a^2-2a-4=0\Leftrightarrow\left[{}\begin{matrix}a=1+\sqrt{5}\\a=1-\sqrt{5}\end{matrix}\right.\Rightarrow tong-S=2\)


Các câu hỏi tương tự
đoàn ngọc hân
Xem chi tiết
Đỗ Thị Thanh Huyền
Xem chi tiết
Châu Ngọc Minh Anh
Xem chi tiết
James Pham
Xem chi tiết
Lavienna
Xem chi tiết
Julian Edward
Xem chi tiết
Thu Thủy
Xem chi tiết
Julian Edward
Xem chi tiết
Măm Măm
Xem chi tiết