Tìm tất cả các giá trị m để [m ; 2m–3] ⊂ (4;+∞)
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Câu 2: Cho các hàm số bậc nhất \(y=\left(m-2\right)x+2\)
a. Tìm tất cả các giá trị của m để hàm số đã cho đồng biến trên R
b. Tìm tất cả các giá trị của m để đồ thị hàm số đã cho song song với đường thẳng \(y=5x+1\)
a) Để đồ thị hàm số \(y=\left(m-2\right)x+2\) đồng biến trên R.
=> \(m-2>0.\)
<=> \(m>2.\)
b) Đồ thị hàm số \(y=\left(m-2\right)x+2\) song song với đường thẳng \(y=5x+1.\)
=> \(m-2=5.\)
<=> \(m=7.\)
Câu 2
a) Để hs đã cho đồng biến trên R thì:
\(m-2>0\\ < =>m>2\)
b) Đề đths đã cho song song với đường thẳng \(y=5x+1\) thì:
\(m-2=5\\ < =>m=7\)
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm tất cả các giá trị của m để hàm số f x = m x + 1 x − m có giá trị lớn nhất trên 1 ; 2 bằng –2.
A. m = -3
B. m = 2
C. m = 4
D. m = 3
Đáp án D
Có y ' = − m 2 − 1 x − m 2 < 0 , ∀ x ∈ 1 ; 2 . Do đó hàm số là hàm nghịch biến trên [1;2], từ đó max x ∈ 1 ; 2 y = y 1 = m + 1 1 − m = − 2 ⇔ m = 3.
Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số \(m\) để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\).
, ( )Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >, ( )
Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)
\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)
Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)
Cho phân số m = x 3 phần x - 2 a Tìm tất cả các số nguyên X để m có giá trị nguyên b tìm tất cả các số nguyên X để
Tìm tất cả các giá trị thực của m để hàm số y = x 3 + 3 x 2 + m có giá trị nhỏ nhất trên [−1;1] bằng 1.
A. m= -1
B. m=1
C. m=3
D. m=-3
Đáp án B
TXĐ: D = ℝ .
y ' = 3 x 2 + 6 x = 0 ⇔ 3 x x + 2 = 0 ⇔ x = − 2 x = 0 .
Ta có bảng biến thiên
Nhận thấy giá trị nhỏ nhất của hàm số y = x 3 + 3 x 2 + m đạt tại x=0 Ta có y 0 = m = 1.
Vậy m=1 thỏa mãn đề bài.
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 x + m có giá trị cực đại và giá trị cực tiểu trái dấu.
A. m ∈ {-2;2}
B. m < -2 hoặc m > 2
C. -2 < m < 2
D. m ∈ R
Đáp án C
Phương pháp:
+) Tính y’, giải phương trình y' = 0 ⇒ các cực trị của hàm số.
+) Tính các giá trị cực trị của hàm số và yCT.yCĐ < 0
Cách giải:
Giá trị cực đại và giá trị cực tiểu trái dấu ⇒ (-2 + m)(2 + m) < 0 ⇔ -2 < m < 2
tìm tất cả các giá trị của m để bpt \(x^2-x+m\le0\) vô nghiệm
\(x^2-x+m\le0\)
\(\Leftrightarrow m\le f\left(x\right)=-x^2+x\)
Bảng biến thiên:
Yêu cầu bài toán thỏa mãn khi \(m>maxf\left(x\right)=f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}\)
cho (P):y=1/2x^2 và (d):y=x-m
a) tìm tất cả các giá trị của m để (d) cắt (P) tại 2 điểm phân biệt nằm về cùng nửa mặt phẳng bờ là trục tung
b) tìm tất cả các giá trị m thuộc(P) sao cho khoảng cách từ M đến trục tung là 2
a.
Phương trình hoành độ giao điểm: \(\dfrac{1}{2}x^2=x-m\Rightarrow x^2-2x+2m=0\)
\(\Delta'=1-2m>0\Leftrightarrow m< \dfrac{1}{2}\) (do (d) cắt (P) tại 2 điểm phân biệt)
Để 2 điểm nằm cùng về phía trục tung thì 2 nghiệm \(x_1,x_2\) cùng dấu.
Mà theo vi ét \(x_1+x_2=2\Rightarrow\) 2 nghiệm cùng dương.
\(\Rightarrow x_1+x_2=2m>0\Leftrightarrow m>0\)
Kết hợp điều kiện ta có \(0< m< \dfrac{1}{2}\)
b.
Từ M đến trục tung là 2 \(\Rightarrow\) \(\left|x\right|=2\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(M\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{2}.2^2=2\\y_2=\dfrac{1}{2}.\left(-2\right)^2=2\end{matrix}\right.\)
\(\Rightarrow M_1\in\left(2;2\right)\) và \(M_2\in\left(-2;2\right)\)