Cho hbh ABCD, M là điểm tùy ý.Chứng minh:
vecto MA - vecto MB= vecto MD- vecto MC
1) Cho hinh hanh ABCD, M la diem tuy y. Chon khang dinh dung trong cac khang dinh sau:
A. vecto MA + vecto MB = vecto MC + vecto MD B. vecto MB + vecto MC = vecto MD + vecto Ma
C. vecto MC + vecto CB = vecto MD + vecto DA D. vecto MA + vecto MC = vecto MB + vecto MD
cho hình vuông abcd cạnh a d là đường thẳng đi qua a // bd . gọi m là điểm thuộc đường thẳng d sao cho |vecto ma + vecto mb + vecto mc - vecto md| nhỏ nhất .tính theo a độ dài vecto md
Cho tứ giác ABCD, I và J là trung điểm của AB và CD,O là trung điểm I. M là điểm bất kỳ.Chứng minh: a) vecto OA + vecto OB + vecto OC + vecto OD = vecto O b) vecto MA + vecto MB + vecto MC + vecto MD = 4MO c) vecto AC + vecto BD = vecto 2IJ
cho hbh ABCD tâm O và điểm M bất kì . CM : vecto MA +vecto MB + vecto MC+ vecto MD= 4 vecto MO
mk cần gấp các b giúp mk vs
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)
\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OD}\right)=4\overrightarrow{MO}\)
(Do \(\overrightarrow{OA}=-\overrightarrow{OC};\overrightarrow{OB}=-\overrightarrow{OD}\))
cho tứ giác ABCD gọi I.J lần lượt là trung điểm của AB.BC.CD.DA và M . O là điểm bất kì chứng minh :
a,vecto ad + vecto bc = 2x vecto IJ
b, vecto OA + OB + OC + OD = 0
C. vecto MA + MB + MC + MD =4MO
Cho hình vuông ABCD cạnh a.
a) Chứng minh rằng vecto u = vecto MA - 2 lần vecto MB + 3 lần vecto MC - 2 lần vecto MD không lhuj thuộc vào vị trí của điểm M.
b) Tính độ dài vecto u.
Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
cho hbh ABCD tâm O và điểm M bất kì . CM : vecto MA +vecto MB + vecto MC+ vecto MD= 4 vecto MO
mk cần gấp các b giúp mk vs