Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhok Bé
Xem chi tiết
Trương Huy Hoàng
10 tháng 3 2021 lúc 23:02

Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4 

= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)

= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)

= (x + y + 1)(x2 - y2) + 2(0 + 1)

= 0(x2 - y2) + 2.1

= 2

Vậy H = 2

Chúc bn học tốt!

Nhok Bé
10 tháng 3 2021 lúc 22:36

Help mik lẹ với ;-;

NSA tươi
Xem chi tiết
Etermintrude💫
1 tháng 3 2022 lúc 18:14

Tham khảo:

undefined

CHÚC EM HỌC TỐT NHÁ hehe

simp luck voltia
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2023 lúc 7:30

\(=\left[\left(\dfrac{-\left(x-y\right)}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)

\(=\dfrac{-x^2+y^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)

\(=\dfrac{-2x^2-y+2}{\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)

\(=\dfrac{-1}{x-2y}\)

Thầy Đức Anh
5 tháng 1 2023 lúc 10:00

Thay $x=-1,76$ và $y=\dfrac{3}{25}$ vào $P=\dfrac{-1}{x-2y}$, ta được:

$P=\dfrac{-1}{-1,76-2.(\dfrac{3}{25})}=\dfrac{1}{2}$.

Lê Hoàng Thùy Linh
Xem chi tiết
Kiều Vũ Linh
19 tháng 10 2023 lúc 21:53

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

Ngọc Ngô
Xem chi tiết
Ran
21 tháng 9 2019 lúc 10:15

thật là khó

Dương Thị Thu Trà
Xem chi tiết
Võ Đông Anh Tuấn
8 tháng 7 2016 lúc 10:14

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)

\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)

\(P=\frac{1}{2y-x}\)

Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)

 

Võ Đông Anh Tuấn
Xem chi tiết
Bùi Trần Nhật Thanh
8 tháng 7 2016 lúc 11:55

Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)

      \(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

    \(C=\frac{x+1}{2x^2+y+2}\)

Ta có: 

A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

=>\(P=\left(A:B\right):C\)

       \(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

       \(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)

        \(=\frac{1}{2y-x}\)

=>\(P=\frac{1}{2y-x}\)

Thế x=-1,76 và y=3/25 vào P

=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)

hoang thu huong
Xem chi tiết
kiss you
Xem chi tiết