chứng minh bằng pp quy nạp \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
chứng minh bằng phương pháp quy nạp \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
Với \(n=1\Rightarrow1< 2\sqrt{1}\) (đúng)
Với \(n=2\Rightarrow1+\frac{1}{\sqrt{2}}< 2\sqrt{2}\Rightarrow\sqrt{2}< 3\) (đúng)
Giả sử đúng với \(n=k\) hay \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}< 2\sqrt{k}\)
Ta cần chứng minh \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}< 2\sqrt{k+1}\)
Thật vậy, ta có:
\(VT=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}< 2\sqrt{k}+\frac{1}{\sqrt{k+1}}\)
\(VT< \frac{2\sqrt{k\left(k+1\right)}+1}{\sqrt{k+1}}< \frac{k+k+1+1}{\sqrt{k+1}}=2\sqrt{k+1}\) (đpcm)
Vậy ....
P/s: \(2\sqrt{k\left(k+1\right)}< k+\left(k+1\right)\) theo BĐT Cô-si
Chứng minh bằng quy nạp: với n nguyên dương tùy ý thì: \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...........+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Chứng minh=phương pháp quy nạp
Chứng minh \(\sqrt{n}< 1+\frac{1}{\sqrt{2}}+.......+\frac{1}{\sqrt{n}}< 2.\sqrt{n}\) \(\left(n\in N,n>1\right)\)
Cho dãy số \(\left(u_n\right)\) được xác định bởi \(u_1=\frac{\sqrt{3}}{3}\) ; \(u_{n+1}=\frac{\sqrt{u_n^2+1}-1}{u_n}\) ; n = 1, 2, 3, ...
1/ Chứng minh \(\left(u_n\right)\) là dãy số bị chặn.
2/ Chứng minh: \(\frac{1}{u_1}+\frac{1}{u_2}+...+\frac{1}{u_{2019}}< 2^{2020}\) (chứng minh bằng quy nạp)
Chứng minh bằng phương pháp quy nạp:
\(x_i>1,\forall i=1,2,.....,n\)thì \(\frac{1}{1+x_i}+\frac{1}{1+x_2}+.....................+\frac{1}{1+x_n}\ge\frac{n}{1+\sqrt[n]{x_1x_2.........x_n}}\)
Cho dãy \(\left(u_n\right)\)xác định: \(\hept{\begin{cases}u_1=3\\u_{n+1}=\frac{1}{2}u_n+\frac{n^2}{4n^2+a}\sqrt{u_n^2+3}\forall n\ge1\end{cases}}\)
a) Với a=0, bằng quy nạp hãy chứng minh \(0< u_{n+1}< u_n,\forall n\ge1\)
b) Với a=1, bằng quy nạp hãy chứng minh \(1-\frac{2}{n}< u_n,\forall n\ge2\)
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
Chứng minh: \(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)
Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}=\frac{1}{(\sqrt{n}+\sqrt{n+1})[n+\sqrt{n(n+1)}+n+1)]}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(\sqrt{n}+\sqrt{n+1})[n+\sqrt{n(n+1)}+n+1)]}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)-\sqrt{n(n+1)}}<\frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}-\sqrt{n(n+1)}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(\frac{1}{2\sqrt{2}+1\sqrt{1}}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......
\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Cộng theo vế:
\(\Rightarrow \text{VT}< 1-\frac{1}{\sqrt{n+1}}\) (đpcm)
chứng minh : \(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)