Với \(n=1\Rightarrow1< 2\sqrt{1}\) (đúng)
Với \(n=2\Rightarrow1+\frac{1}{\sqrt{2}}< 2\sqrt{2}\Rightarrow\sqrt{2}< 3\) (đúng)
Giả sử đúng với \(n=k\) hay \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}< 2\sqrt{k}\)
Ta cần chứng minh \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}< 2\sqrt{k+1}\)
Thật vậy, ta có:
\(VT=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}< 2\sqrt{k}+\frac{1}{\sqrt{k+1}}\)
\(VT< \frac{2\sqrt{k\left(k+1\right)}+1}{\sqrt{k+1}}< \frac{k+k+1+1}{\sqrt{k+1}}=2\sqrt{k+1}\) (đpcm)
Vậy ....
P/s: \(2\sqrt{k\left(k+1\right)}< k+\left(k+1\right)\) theo BĐT Cô-si