Chứng minh: \(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)
1.Rút gọn
\(A=\left(\frac{2\sqrt[3]{2xy}}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right)\cdot\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)
2. Chứng minh
\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{n^2}{4n^2+1}\)
Chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}< \frac{3}{7}\)
Cho a,b,c>0 thỏa mãn: a.b.c=8
Chứng minh: \(\frac{a^2}{\sqrt{\left(1+a^3\right).\left(1+b^3\right)}}+\frac{b^2}{\sqrt{\left(1+b^3\right).\left(1+c^3\right)}}+\frac{c^2}{\sqrt{\left(1+c^3\right).\left(1+a^3\right)}}\ge\frac{4}{3}\)
Chứng minh rằng với mọi số n nguyên dương, ta có:
\(S=\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)n}< \frac{5}{2}\)
Tính \(Q=\frac{1}{4+\sqrt{4}}+\frac{1}{5\sqrt{2}+2\sqrt{5}}+\frac{1}{6\sqrt{3}+3\sqrt{6}}+...+\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}\)
$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{x}}<2\left(n-1\right)$
Chứng mình rằng với mọi số nguyên dương n, ta có:
\(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)
Chứng minh :
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-1\)