Cho A=\(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{2\left(\sqrt{3}+\sqrt{5}\right)}+\frac{1}{3\left(\sqrt{5}+\sqrt{7}\right)}+...+\frac{1}{40\left(\sqrt{79}+\sqrt{81}\right)}\)
Chứng minh rằng A<\(\frac{8}{9}\)
Giúp mình với, mình đang rối quá
1. Tính gt của bt:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)
2. Tính tổng \(S=\sqrt{1+\left(1+\frac{1}{3}\right)^2}+\sqrt{1+\left(\frac{1}{2}+\frac{1}{4}\right)^2}+\sqrt{1+\left(\frac{1}{3}+\frac{1}{5}\right)^2}+...+\sqrt{1+\left(\frac{1}{2014}+\frac{1}{2016}\right)^2}\)
Thực hiện phép tính:
a)\(\frac{5}{a-\sqrt{11}}+\frac{1}{3\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
b)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
c)\(\left(\frac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2-\left(\frac{9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2\)
Rút gọn
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
3. a.\(\sqrt{\left(4-\sqrt{17}\right)^2}\)
b.\(\frac{2\sqrt{3}}{2}\)
c \(\frac{\sqrt{6}+\sqrt{14}}{\text{2√3+√28}}\)
d.\(\frac{x+1}{\sqrt{x^2-1}}\)
e.\(\frac{x^2-5}{x+\sqrt{5}}\)
f.\(\frac{2}{2-\sqrt{3}}\)
g.\(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
f.\(\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)
i.\(\frac{3}{\sqrt{20}}+\frac{1}{\sqrt{60}}-2\sqrt{\frac{1}{15}}\)
k.\(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}\)
i.(\(\frac{1}{\sqrt{5}-\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{3}}\))\(\sqrt{5}\)
h.\(\left(\sqrt{20}-\sqrt{45}+\sqrt{5}\right)\sqrt{5}\)
l.\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
m.\(\frac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{\frac{4}{3}}\)
n.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
d\(\left(2+\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2\)
Cho a,b,c>0 thỏa mãn: a.b.c=8
Chứng minh: \(\frac{a^2}{\sqrt{\left(1+a^3\right).\left(1+b^3\right)}}+\frac{b^2}{\sqrt{\left(1+b^3\right).\left(1+c^3\right)}}+\frac{c^2}{\sqrt{\left(1+c^3\right).\left(1+a^3\right)}}\ge\frac{4}{3}\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
Thực hiện phép tính:
a) \(\left(\frac{1}{7-4\sqrt{3}}+\frac{3}{7+4\sqrt{3}}\right)\left(7+2\sqrt{3}\right)\)
b)\(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right).4\sqrt{15}\)
c)\(\sqrt{5-2\sqrt{6-25-\sqrt{96}}}\)
d)\(\sqrt{23-2\sqrt{112}}+\sqrt{23+2\sqrt{112}}\)
Rút gọn biểu thức:
a)\(\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
b)\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d)\(\left(1+tan^2a\right)\left(1-sin^2a\right)+\left(1+cotan^2a\right)\left(1-cos^2a\right)\)