Cho x + y =19; x . y = 18. Không tính giá trị của x và ý. Hãy tính giá trị của biểu thức:
M = \(x^2+y^2\)
N = \(x^3-y^3\)
cho ba so x,y,z thoa man : 19/x+y+19/y+z+19/z+x=7x/y+z+7y/z+x+7z/x+z=133/10
19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = 7+\frac{7x}{y+z}+7+\frac{7y}{z+x}+7+\frac{7z}{z+y} - 21 \\ \\ 19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = \frac{7(x+y+z)}{x+y}+\frac{7(x+y+z)}{y+z}+\frac{7(z+y+z)}{x+z} - 21 \\ \\ 19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = 7(x+y+z).(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) - 21 \\ \\ \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z} = t \\ \\ \Rightarrow 19t = 7(x+y+z).t -21 = \frac{133}{10} \\ \\ 19t = \frac{133}{10} \Rightarrow t = \frac{7}{10} \\ \\ \Rightarrow 7(x+y+z).\frac{7}{10} -21 = \frac{133}{10} \Rightarrow M = x+y+z = 7
ban nguyen dan go the nao ra toan ki hieu la the
cho ba so x,y,z thoa man : 19/x+y+19/y+z+19/z+x=7x/y+z+7y/z+x+7z/x+z=133/10
tinh (x+y+z)^2
Cho \(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7y}{z+x}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)
Tính x+y+z?
Cho \(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)
Tính x+y+z?
Cho x,y,z thỏa \(\dfrac{19}{x+y}\) +\(\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7y}{x+z}+\dfrac{7z}{y+x}=\dfrac{133}{10}\)
Tính M=x+y+z
Cho \(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7y}{x+z}=\dfrac{7z}{x+y}=\dfrac{133}{10}\)
Tính \(Q=\left(x+y+z\right)^2\)
mình nghĩ bạn chép sai đề bài
dấu ''='' thứ 2 thay bằng dấu ''+''
ta có
\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{x+z}=\dfrac{133}{10}\)
\(\Rightarrow19\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{133}{10}\)
\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=\dfrac{7}{10}\)
lại có
\(\dfrac{7x}{y+z}+\dfrac{7y}{x+z}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)
\(\Rightarrow7\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)=\dfrac{133}{10}\)
\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{19}{10}\)
\(\Rightarrow\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}=\dfrac{49}{10}\)
\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{49}{10}\)
\(\Rightarrow\dfrac{7}{10}\left(x+y+z\right)=\dfrac{49}{10}\Rightarrow\left(x+y+z\right)^2=49.\)
Cho x,y ∈ z .cmr
Nếu A=5x+y ⋮19 thì B=4x-3y⋮19
A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (đpcm)
Cho 3 số x , y , z , thỏa mãn :
\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{7x}{y+z}+\frac{7x}{z+x}+\frac{7x}{x+y}=\frac{133}{10}\)
Tính giá trị biểu thức : \(M=\left(x+y+z\right)^2\)
cho x;y thuộc Z , chứng minh rằng : nếu A= 5x + y chia hết cho 19 thì B= 4x - 3y chia hết cho 19
ta có 4x - 3y = 19x - 3.(5x + y)
Vì 19x chia hết cho 19;
5x + y chia hết cho 19 nên 3(5x + y) chia hết cho 19
do đó 19x - 3(5x + y) chia hết cho 19 hay 4x - 3y chia hết cho 19
vì 5x+y : 19 nên
5x:19 =>x:19=>4x:19(1)
y:19 =>3y:19 (2)
từ 1 và 2 ta có
4x-3y:19
(dấu : là chia hết)
Cho x, y thuộc Z
CM : Nếu A=5x+y Chia hết cho 19 thì B = 4x - 3y cũng chia hết cho 19
Chào bạn!
Có lẽ kì nghỉ hè đã làm phai mờ kiến thức nhỉ, gặp bài này mình cũng hơi thấy đau đầu đây
Mình sẽ chứng minh bài toán này như sau:
Theo bài , ta có:
\(A=5x+y\Leftrightarrow16A=80x+16y\)
Vì \(A⋮19\Rightarrow16A⋮19\Leftrightarrow80x+16y⋮19\)
Nhận thấy: \(80x+16y=20\left(4x\right)-3y+19y⋮19\)
Mà \(19y⋮19\Rightarrow20\left(4x\right)-3y⋮19\)
Trong đó: \(\left(20;19\right)=1\)
\(\Rightarrow4x-3y⋮19\left(\text{đ}pcm\right)\)
Cảm ơn đã theo dõi câu trả lời của mình
Cách khác nhé !
Ta có : 5x + y chia hết cho 19
<=> 3.( 5x + y ) = 15x + 3y chia hết cho 9
Lại có : 15x + 3y + ( 4x - 3y ) = 15x + 3y + 4x - 3y = 19x chia hết cho 19
Vậy 4x - 3y chia hết cho 9