Bài 1 : CHo tam giác ABC có AM là đường trung tuyến, trên cạnh AB lấy điểm D sao cho AD = 1/3AB. Trên cạnh AC lấy điểm E sao cho AE =1/3AC. Gọi F là giao điểm của AM và CD.Chứng minh B,E,F thẳng hàng
Bài 1 : CHo tam giác ABC có AM là đường trung tuyến, trên cạnh AB lấy điểm D sao cho AD = 1/3AB. Trên cạnh AC lấy điểm E sao cho AE =1/3AC. Gọi F là giao điểm của AM và CD.Chứng minh B,E,F thẳng hàng
Phương Ann Nguyễn Thanh Hằng Akai Haruma Hùng Nguyễn
Mashiro Shiina Nguyễn Huy Tú Lightning Farron Võ Đông Anh Tuấn
Trần Việt Linh
Jup !!!
Bài 1:
cho Tam giác ABC,trên tia đối AB lấy điểm D sao cho AB=AD,trên cạnh AC lấy điểm G sao cho AG=1/3AC,gọi E là giao điểm của BG và CD.chứng minh E là trung điểm CD
Câu 1: Cho tam giác ABC, Mlaf trung điểm của BD. Trên AB lấy D sao cho AD=1/3 AB. Trên AC lấy E sao cho AE= 1/3 AC. Gọi F là giao điểm của AM=CD. Chứng minh B,E,F thẳng hàng
CHO TAM GIÁC ABC CÓ M LÀ TRUNG ĐIỂM CỦA BC, TRÊN AB LẤY D SAO CHO AD=AB/3.TRÊN AC LẤY E SAO CHO AE=AC/3.GỌI F LÀ GIAO ĐIỂM CỦA AM VÀ CD . CHỨNG MINH BA ĐIỂM B,F,E THẲNG HÀNG
Bài 1:
cho tam giác ABC có AB=AC. Gọi M là trung điểm của cạnh BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE
1) Chứng minh: tam giác ABM = tam giác ACM
2) Chứng minh: AM vuông góc BC
3) CHứng minh: tam giác ADM = tam giác AEM
4) Gọi H là trung điểm của cạnh EC. TỪ C vẽ đường thẳng song song với cạnh ME, đường thẳng này cắt tia MH tại F. Chưng minh: Ba điểm D, E, F thẳng hàng
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy E sao cho AD= AE
a. Chứng minh rằng tâm giác AMB = tam giác AMC
b. Chứng minh rằng AM là tia phân giác của góc A và AM vuông góc với BC
c. Gọi K là giao điểm của AM và DE. Chưng minh AK vuông góc với DE
d. trên tia đối của tia ED lấy đeiểm F sao cho FE= MC, gọi H là trung điểm của EC. Chứng minh 3 điểm M, H, F thẳng hàng
HOI KHO ^.^
Cho tam giác abc ,m là trung điểm cạnh bc .Trên cạnh ac lấy 2 điển d và e sao cho ad=de=ec.gọi i là giao điểm am và bd
a)chứng minh .me//bd
b)i là trung điểm am ,và ib=3id
c)trên ab lấy f sao cho à =1/3ab.chưngs minh 3 điểm i,e,f thẳng hàng
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Cho tam giác abc , m là trung điểm bc, trên ac , lấy d, e sao cho ad=de=ec , gọi i là giao điểm am, bd
a) cmr i là trung điểm am
b) ib=3id
c)trên ad , lấy f sao cho af=1/3ab , cmr c,i,f thẳng hàng